Nuclear operators on the Banach space of totally measurable functions
HTML articles powered by AMS MathViewer
- by Marian Nowak;
- Proc. Amer. Math. Soc. 152 (2024), 3977-3990
- DOI: https://doi.org/10.1090/proc/16886
- Published electronically: July 29, 2024
- HTML | PDF | Request permission
Abstract:
Let $\Sigma$ be a $\sigma$-algebra of subsets of a set $\Omega$ and $X$ be a Banach space, and let $B(\Sigma ,X)$ stand for the Banach space of all $X$-valued totally $\Sigma$-measurable functions on $\Omega$, equipped with the sup-norm. We study nuclear operators $T:B(\Sigma ,X)\rightarrow Y$ between Banach spaces $B(\Sigma ,X)$ and $Y$ in terms of their representing measures $m:\Sigma \rightarrow \mathcal {N}(X,Y)$, where $\mathcal {N}(X,Y)$ stands for the Banach space of all nuclear operators $U:X\rightarrow Y$, equipped with the nuclear norm. We establish the relationship between nuclearity of a bounded linear operator $T:B(\Sigma ,X)\rightarrow Y$ and nuclearity of its conjugate operator.References
- J. K. Brooks and P. W. Lewis, Linear operators and vector measures, Trans. Amer. Math. Soc. 192 (1974), 139–162. MR 338821, DOI 10.1090/S0002-9947-1974-0338821-5
- J. K. Brooks and P. Lewis, Operators on function spaces, Bull. Amer. Math. Soc. 78 no. 5 (1972), 697–701.
- J. Diestel, The Radon-Nikodym property and the coincidence of integral and nuclear operators, Rev. Roumaine Math. Pures Appl. 17 (1972), 1611–1620. MR 333728
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, RI, 1977. With a foreword by B. J. Pettis. MR 453964
- N. Dinculeanu, Vector measures, International Series of Monographs in Pure and Applied Mathematics, Vol. 95, Pergamon Press, Oxford-New York-Toronto; VEB Deutscher Verlag der Wissenschaften, Berlin, 1967. MR 206190
- N. Dinculeanu, Vector integration and stochastic integration in banach spaces, Wiley-Interscience, New York, 2000.
- Israel Gohberg, Seymour Goldberg, and Nahum Krupnik, Traces and determinants of linear operators, Operator Theory: Advances and Applications, vol. 116, Birkhäuser Verlag, Basel, 2000. MR 1744872, DOI 10.1007/978-3-0348-8401-3
- Alexandre Grothendieck, Sur les espaces ($F$) et ($DF$), Summa Brasil. Math. 3 (1954), 57–123 (French). MR 75542
- Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), Chapter 1: 196 pp.; Chapter 2: 140 (French). MR 75539
- Marian Nowak, Decompositions for weakly compact operators on the space of totally measurable functions, Indag. Math. (N.S.) 23 (2012), no. 3, 381–387. MR 2948634, DOI 10.1016/j.indag.2012.02.004
- Marian Nowak, Nuclear operators and applications to kernel operators, Math. Nachr. 296 no. 5 (2023), 2109–2120.
- Albrecht Pietsch, Nuclear locally convex spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 66, Springer-Verlag, New York-Heidelberg, 1972. Translated from the second German edition by William H. Ruckle. MR 350360
- Albrecht Pietsch, Eigenvalues and s-Numbers, Akadem. Verlagsges. Geest & Portig, Leipzig, 1987.
- A. F. Ruston, On the Fredholm theory of integral equations for operators belonging to the trace class of a general Banach space, Proc. London Math. Soc. (2) 53 (1951), 109–124. MR 42612, DOI 10.1112/plms/s2-53.2.109
- Raymond A. Ryan, Introduction to tensor products of Banach spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2002. MR 1888309, DOI 10.1007/978-1-4471-3903-4
- Alan H. Shuchat, Integral representation theorems in topological vector spaces, Trans. Amer. Math. Soc. 172 (1972), 373–397. MR 312264, DOI 10.1090/S0002-9947-1972-0312264-0
- Khyson Swong, A representation theory of continuous linear maps, Math. Ann. 155 (1964), 270–291; errata: 157 (1964), 178. MR 165358, DOI 10.1007/BF01354862
- M. A. Sofi, Vector measures and nuclear operators, Illinois J. Math. 49 (2005), no. 2, 369–383. MR 2163940
- Kôsaku Yosida, Functional analysis, 4th ed., Die Grundlehren der mathematischen Wissenschaften, Band 123, Springer-Verlag, New York-Heidelberg, 1974. MR 350358
Bibliographic Information
- Marian Nowak
- Affiliation: Institute of Mathematics, University of Zielona Góra, ul. Szafrana 4A, 65–516 Zielona Góra, Poland
- MR Author ID: 223778
- Email: M.Nowak@wmie.uz.zgora.pl
- Received by editor(s): November 18, 2023
- Received by editor(s) in revised form: March 21, 2024, and April 4, 2024
- Published electronically: July 29, 2024
- Communicated by: Stephen Dilworth
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 3977-3990
- MSC (2020): Primary 46G10, 47B10; Secondary 46E40, 46A70
- DOI: https://doi.org/10.1090/proc/16886
- MathSciNet review: 4781989