A non-vanishing result on the singularity category
HTML articles powered by AMS MathViewer
- by Xiao-Wu Chen, Zhi-Wei Li, Xiaojin Zhang and Zhibing Zhao;
- Proc. Amer. Math. Soc. 152 (2024), 3765-3776
- DOI: https://doi.org/10.1090/proc/16898
- Published electronically: July 31, 2024
- HTML | PDF | Request permission
Abstract:
We prove that a virtually periodic object in an abelian category gives rise to a non-vanishing result on certain Hom groups in the singularity category. Consequently, for any artin algebra with infinite global dimension, its singularity category has no silting subcategory, and the associated differential graded Leavitt algebra has a non-vanishing cohomology in each degree. We verify the Singular Presilting Conjecture for singularly-minimal algebras and ultimately-closed algebras. We obtain a trichotomy on the Hom-finiteness of the cohomologies of differential graded Leavitt algebras.References
- Takuma Aihara, Takahiro Honma, Kengo Miyamoto, and Qi Wang, Report on the finiteness of silting objects, Proc. Edinb. Math. Soc. (2) 64 (2021), no. 2, 217–233. MR 4277759, DOI 10.1017/S0013091521000109
- Takuma Aihara and Osamu Iyama, Silting mutation in triangulated categories, J. Lond. Math. Soc. (2) 85 (2012), no. 3, 633–668. MR 2927802, DOI 10.1112/jlms/jdr055
- J. L. Alperin and L. Evens, Representations, resolutions and Quillen’s dimension theorem, J. Pure Appl. Algebra 22 (1981), no. 1, 1–9. MR 621284, DOI 10.1016/0022-4049(81)90079-7
- Luchezar L. Avramov and Oana Veliche, Stable cohomology over local rings, Adv. Math. 213 (2007), no. 1, 93–139. MR 2331239, DOI 10.1016/j.aim.2006.11.012
- Maurice Auslander, María Inés Platzeck, and Idun Reiten, Periodic modules over weakly symmetric algebras, J. Pure Appl. Algebra 11 (1977/78), no. 1-3, 279–291. MR 472916, DOI 10.1016/0022-4049(77)90057-3
- Maurice Auslander and Idun Reiten, The Cohen-Macaulay type of Cohen-Macaulay rings, Adv. in Math. 73 (1989), no. 1, 1–23. MR 979585, DOI 10.1016/0001-8708(89)90057-1
- Maurice Auslander and Idun Reiten, On a generalized version of the Nakayama conjecture, Proc. Amer. Math. Soc. 52 (1975), 69–74. MR 389977, DOI 10.1090/S0002-9939-1975-0389977-6
- Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1997. Corrected reprint of the 1995 original. MR 1476671
- Sheila Brenner, Michael C. R. Butler, and Alastair D. King, Periodic algebras which are almost Koszul, Algebr. Represent. Theory 5 (2002), no. 4, 331–367. MR 1930968, DOI 10.1023/A:1020146502185
- Ragnar-Olaf Buchweitz, Maximal Cohen-Macaulay modules and Tate cohomology, Mathematical Surveys and Monographs, vol. 262, American Mathematical Society, Providence, RI, [2021] ©2021. With appendices and an introduction by Luchezar L. Avramov, Benjamin Briggs, Srikanth B. Iyengar and Janina C. Letz. MR 4390795, DOI 10.1090/surv/262
- Xiao-Wu Chen, Singularity categories, Schur functors and triangular matrix rings, Algebr. Represent. Theory 12 (2009), no. 2-5, 181–191. MR 2501179, DOI 10.1007/s10468-009-9149-2
- Xiao-Wu Chen, The singularity category of an algebra with radical square zero, Doc. Math. 16 (2011), 921–936. MR 2880676, DOI 10.4171/dm/356
- Xiao-Wu Chen, Singular equivalences of trivial extensions, Comm. Algebra 44 (2016), no. 5, 1961–1970. MR 3490659, DOI 10.1080/00927872.2015.1027384
- Xiao-Wu Chen and Zhengfang Wang, The dg Leavitt algebra, singular Yoneda category and singularity category, Adv. Math. 440 (2024), Paper No. 109541, 70. With an appendix by Bernhard Keller and Yu Wang. MR 4708142, DOI 10.1016/j.aim.2024.109541
- Xiao-wu Chen and Zhengfang Wang, Differential graded enhancements of singularity categories, arXiv:2312.12138v1, 2023.
- Xiao-Wu Chen and Yu Ye, Retractions and Gorenstein homological properties, Algebr. Represent. Theory 17 (2014), no. 3, 713–733. MR 3254767, DOI 10.1007/s10468-013-9415-1
- Yiping Chen, Wei Hu, Yongyun Qin, and Ren Wang, Singular equivalences and Auslander-Reiten conjecture, J. Algebra 623 (2023), 42–63. MR 4554713, DOI 10.1016/j.jalgebra.2023.02.018
- Yurij A. Drozd and Vladimir V. Kirichenko, Finite-dimensional algebras, Springer-Verlag, Berlin, 1994. Translated from the 1980 Russian original and with an appendix by Vlastimil Dlab. MR 1284468, DOI 10.1007/978-3-642-76244-4
- David Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), no. 1, 35–64. MR 570778, DOI 10.1090/S0002-9947-1980-0570778-7
- Dieter Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. MR 935124, DOI 10.1017/CBO9780511629228
- Osamu Iyama and Dong Yang, Silting reduction and Calabi-Yau reduction of triangulated categories, Trans. Amer. Math. Soc. 370 (2018), no. 11, 7861–7898. MR 3852451, DOI 10.1090/tran/7213
- J. P. Jans, Some generalizations of finite projective dimension, Illinois J. Math. 5 (1961), 334–344. MR 183748
- Martin Kalck, A new equivalence between singularity categories of commutative algebras, Adv. Math. 390 (2021), Paper No. 107913, 11. MR 4292960, DOI 10.1016/j.aim.2021.107913
- B. Keller and D. Vossieck, Aisles in derived categories, Bull. Soc. Math. Belg. Sér. A 40 (1988), no. 2, 239–253. Deuxième Contact Franco-Belge en Algèbre (Faulx-les-Tombes, 1987). MR 976638
- Yuta Kimura, Hiroyuki Minomoto, and Kota Yamaura, Tilting theory for finite dimensional 1-Iwanaga-Gorenstein algebras, arXiv:2210.06211v1, 2022.
- W. G. Leavitt, The module type of a ring, Trans. Amer. Math. Soc. 103 (1962), 113–130. MR 132764, DOI 10.1090/S0002-9947-1962-0132764-X
- Ming Lu and Bin Zhu, Singularity categories of Gorenstein monomial algebras, J. Pure Appl. Algebra 225 (2021), no. 8, Paper No. 106651, 39. MR 4190607, DOI 10.1016/j.jpaa.2020.106651
- D. O. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Tr. Mat. Inst. Steklova 246 (2004), no. Algebr. Geom. Metody, Svyazi i Prilozh., 240–262 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 3(246) (2004), 227–248. MR 2101296
- Marju Purin, Complexity of trivial extensions of iterated tilted algebras, J. Algebra Appl. 11 (2012), no. 4, 1250067, 15. MR 2959416, DOI 10.1142/S0219498812500673
- Claus Michael Ringel, The Gorenstein projective modules for the Nakayama algebras. I, J. Algebra 385 (2013), 241–261. MR 3049570, DOI 10.1016/j.jalgebra.2013.03.014
- Satoshi Usui, Characterization of eventually periodic modules in the singularity categories, J. Pure Appl. Algebra 226 (2022), no. 12, Paper No. 107145, 14. MR 4425238, DOI 10.1016/j.jpaa.2022.107145
- Birge Zimmermann-Huisgen, Predicting syzygies over monomial relations algebras, Manuscripta Math. 70 (1991), no. 2, 157–182. MR 1085630, DOI 10.1007/BF02568368
Bibliographic Information
- Xiao-Wu Chen
- Affiliation: Key Laboratory of Wu Wen-Tsun Mathematics, Chinese Academy of Sciences, School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, Anhui, People’s Republic of China
- Email: xwchen@mail.ustc.edu.cn
- Zhi-Wei Li
- Affiliation: School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, Jiangsu, People’s Republic of China
- ORCID: 0000-0002-7628-7314
- Email: zhiweili@jsnu.edu.cn
- Xiaojin Zhang
- Affiliation: School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, Jiangsu, People’s Republic of China
- Email: xjzhang@jsnu.edu.cn
- Zhibing Zhao
- Affiliation: Center for Pure Mathematics, School of Mathematical Sciences, Anhui University, Hefei 230601, Anhui, People’s Republic of China
- Email: zbzhao@ahu.edu.cn
- Received by editor(s): October 31, 2023
- Received by editor(s) in revised form: March 17, 2024, and March 28, 2024
- Published electronically: July 31, 2024
- Additional Notes: This work was supported by the National Natural Science Foundation of China (Nos. 12325101, 12171207, 12131015, 12371015 and 12161141001).
The fourth author is the corresponding author - Communicated by: Sarah Witherspoon
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 3765-3776
- MSC (2020): Primary 16E05, 18G80, 16S88
- DOI: https://doi.org/10.1090/proc/16898
- MathSciNet review: 4781972