Some maximum principles for parabolic mixed local/nonlocal operators
HTML articles powered by AMS MathViewer
- by Serena Dipierro, Edoardo Proietti Lippi and Enrico Valdinoci;
- Proc. Amer. Math. Soc. 152 (2024), 3923-3939
- DOI: https://doi.org/10.1090/proc/16899
- Published electronically: July 31, 2024
- HTML | PDF | Request permission
Abstract:
The goal of this paper is to establish new Maximum Principles for parabolic equations in the framework of mixed local/nonlocal operators.
In particular, these results apply to the case of mixed local/nonlocal Neumann boundary conditions, as introduced by Dipierro, Proietti Lippi, and Valdinoci [Ann. Inst. H. Poincaré C Anal. Non Linéaire 40 (2023), pp. 1093–1166].
Moreover, they play an important role in the analysis of population dynamics involving the so-called Allee effect, which is performed by Dipierro, Proietti Lippi, and Valdinoci [J. Math. Biol. 89 (2024), Paper No. 19]. This is particularly relevant when studying biological populations, since the Allee effect detects a critical density below which the population is severely endangered and at risk of extinction.
References
- Nicola Abatangelo and Matteo Cozzi, An elliptic boundary value problem with fractional nonlinearity, SIAM J. Math. Anal. 53 (2021), no. 3, 3577–3601. MR 4275496, DOI 10.1137/20M1342641
- Nicola Abatangelo and Enrico Valdinoci, Getting acquainted with the fractional Laplacian, Contemporary research in elliptic PDEs and related topics, Springer INdAM Ser., vol. 33, Springer, Cham, 2019, pp. 1–105. MR 3967804
- Warder C. Allee, Animal aggregations: a study in general sociology, University of Chicago Press, Chicago, IL, 1931., DOI 10.5962/bhl.title.7313
- Warder C. Allee, The social life of animals, William Heinemann, London, UK, 1938., DOI 10.5962/bhl.title.7226
- Warder C. Allee and Edith S. Bowen, Studies in animal aggregations: mass protection against colloidal silver among goldfishes, J. Exper. Zoology 61 (1932), no. 2, 185–207., DOI 10.1002/jez.1400610202
- Alessandro Audrito, Juan-Carlos Felipe-Navarro, and Xavier Ros-Oton, The Neumann problem for the fractional Laplacian: regularity up to the boundary, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 24 (2023), no. 2, 1155–1222. MR 4630055, DOI 10.2422/2036-2145.202105_{0}96
- Guy Barles, Emmanuel Chasseigne, Adina Ciomaga, and Cyril Imbert, Lipschitz regularity of solutions for mixed integro-differential equations, J. Differential Equations 252 (2012), no. 11, 6012–6060. MR 2911421, DOI 10.1016/j.jde.2012.02.013
- Guy Barles and Cyril Imbert, Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited, Ann. Inst. H. Poincaré C Anal. Non Linéaire 25 (2008), no. 3, 567–585. MR 2422079, DOI 10.1016/j.anihpc.2007.02.007
- Stefano Biagi, Eugenio Vecchi, Serena Dipierro, and Enrico Valdinoci, Semilinear elliptic equations involving mixed local and nonlocal operators, Proc. Roy. Soc. Edinburgh Sect. A 151 (2021), no. 5, 1611–1641. MR 4313576, DOI 10.1017/prm.2020.75
- Stefano Biagi, Serena Dipierro, Enrico Valdinoci, and Eugenio Vecchi, Mixed local and nonlocal elliptic operators: regularity and maximum principles, Comm. Partial Differential Equations 47 (2022), no. 3, 585–629. MR 4387204, DOI 10.1080/03605302.2021.1998908
- Stefano Biagi, Serena Dipierro, Enrico Valdinoci, and Eugenio Vecchi, A Brezis-Nirenberg type result for mixed local and nonlocal operators. arXiv:2209.07502, 2022.
- Stefano Biagi, Serena Dipierro, Enrico Valdinoci, and Eugenio Vecchi, A Hong-Krahn-Szegö inequality for mixed local and nonlocal operators, Math. Eng. 5 (2023), no. 1, Paper No. 014, 25. MR 4391102, DOI 10.3934/mine.2023014
- Stefano Biagi, Serena Dipierro, Enrico Valdinoci, and Eugenio Vecchi, A Faber-Krahn inequality for mixed local and nonlocal operators, J. Anal. Math. 150 (2023), no. 2, 405–448. MR 4645045, DOI 10.1007/s11854-023-0272-5
- Stefano Biagi, Dimitri Mugnai, and Eugenio Vecchi, A Brezis-Oswald approach for mixed local and nonlocal operators, Commun. Contemp. Math. 26 (2024), no. 2, Paper No. 2250057, 28. MR 4701446, DOI 10.1142/S0219199722500572
- Imran H. Biswas, Espen R. Jakobsen, and Kenneth H. Karlsen, Viscosity solutions for a system of integro-PDEs and connections to optimal switching and control of jump-diffusion processes, Appl. Math. Optim. 62 (2010), no. 1, 47–80. MR 2653895, DOI 10.1007/s00245-009-9095-8
- Xavier Cabré, Serena Dipierro, and Enrico Valdinoci, The Bernstein technique for integro-differential equations, Arch. Ration. Mech. Anal. 243 (2022), no. 3, 1597–1652. MR 4381148, DOI 10.1007/s00205-021-01749-x
- Zhen-Qing Chen, Panki Kim, Renming Song, and Zoran Vondraček, Boundary Harnack principle for $\Delta +\Delta ^{\alpha /2}$, Trans. Amer. Math. Soc. 364 (2012), no. 8, 4169–4205. MR 2912450, DOI 10.1090/S0002-9947-2012-05542-5
- Cristiana De Filippis and Giuseppe Mingione, Gradient regularity in mixed local and nonlocal problems, Math. Ann. 388 (2024), no. 1, 261–328. MR 4693935, DOI 10.1007/s00208-022-02512-7
- Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521–573. MR 2944369, DOI 10.1016/j.bulsci.2011.12.004
- Serena Dipierro, Edoardo Proietti Lippi, and Enrico Valdinoci, Linear theory for a mixed operator with Neumann conditions, Asymptot. Anal. 128 (2022), no. 4, 571–594. MR 4438596, DOI 10.3233/asy-211718
- Serena Dipierro, Edoardo Proietti Lippi, and Enrico Valdinoci, (Non)local logistic equations with Neumann conditions, Ann. Inst. H. Poincaré C Anal. Non Linéaire 40 (2023), no. 5, 1093–1166. MR 4651677, DOI 10.4171/aihpc/57
- Serena Dipierro, Edoardo Proietti Lippi, and Enrico Valdinoci, The role of Allee effects for Gaussian and Lévy dispersals in an environmental niche, J. Math. Biol. 89 (2024), no. 2, Paper No. 19, 39. MR 4764600, DOI 10.1007/s00285-024-02106-8
- Serena Dipierro, Xavier Ros-Oton, and Enrico Valdinoci, Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam. 33 (2017), no. 2, 377–416. MR 3651008, DOI 10.4171/RMI/942
- Serena Dipierro and Enrico Valdinoci, Description of an ecological niche for a mixed local/nonlocal dispersal: an evolution equation and a new Neumann condition arising from the superposition of Brownian and Lévy processes, Phys. A 575 (2021), Paper No. 126052, 20. MR 4249816, DOI 10.1016/j.physa.2021.126052
- Prashanta Garain and Juha Kinnunen, On the regularity theory for mixed local and nonlocal quasilinear elliptic equations, Trans. Amer. Math. Soc. 375 (2022), no. 8, 5393–5423. MR 4469224, DOI 10.1090/tran/8621
- Prashanta Garain and Erik Lindgren, Higher Hölder regularity for mixed local and nonlocal degenerate elliptic equations, Calc. Var. Partial Differential Equations 62 (2023), no. 2, Paper No. 67, 36. MR 4530314, DOI 10.1007/s00526-022-02401-6
- Prashanta Garain and Alexander Ukhlov, Mixed local and nonlocal Sobolev inequalities with extremal and associated quasilinear singular elliptic problems, Nonlinear Anal. 223 (2022), Paper No. 113022, 35. MR 4444761, DOI 10.1016/j.na.2022.113022
- Espen R. Jakobsen and Kenneth H. Karlsen, Continuous dependence estimates for viscosity solutions of integro-PDEs, J. Differential Equations 212 (2005), no. 2, 278–318. MR 2129093, DOI 10.1016/j.jde.2004.06.021
- Eugenio Montefusco, Benedetta Pellacci, and Gianmaria Verzini, Fractional diffusion with Neumann boundary conditions: the logistic equation, Discrete Contin. Dyn. Syst. Ser. B 18 (2013), no. 8, 2175–2202. MR 3082317, DOI 10.3934/dcdsb.2013.18.2175
- Benedetta Pellacci and Gianmaria Verzini, Best dispersal strategies in spatially heterogeneous environments: optimization of the principal eigenvalue for indefinite fractional Neumann problems, J. Math. Biol. 76 (2018), no. 6, 1357–1386. MR 3771424, DOI 10.1007/s00285-017-1180-z
- Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Springer-Verlag, New York, 1984. Corrected reprint of the 1967 original. MR 762825, DOI 10.1007/978-1-4612-5282-5
- Ariel M. Salort and Eugenio Vecchi, On the mixed local-nonlocal Hénon equation, Differential Integral Equations 35 (2022), no. 11-12, 795–818. MR 4466444, DOI 10.57262/die035-1112-795
- Xifeng Su, Enrico Valdinoci, Yuanhong Wei, and Jiwen Zhang, Regularity results for solutions of mixed local and nonlocal elliptic equations, Math. Z. 302 (2022), no. 3, 1855–1878. MR 4492518, DOI 10.1007/s00209-022-03132-2
- Zoran Vondraček, A probabilistic approach to a non-local quadratic form and its connection to the Neumann boundary condition problem, Math. Nachr. 294 (2021), no. 1, 177–194. MR 4245573, DOI 10.1002/mana.201900061
Bibliographic Information
- Serena Dipierro
- Affiliation: Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 Australia
- MR Author ID: 924411
- Email: serena.dipierro@uwa.edu.au
- Edoardo Proietti Lippi
- Affiliation: Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 Australia
- MR Author ID: 1328476
- ORCID: 0009-0008-7838-8654
- Email: edoardo.proiettilippi@uwa.edu.au
- Enrico Valdinoci
- Affiliation: Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 Australia
- MR Author ID: 659058
- ORCID: 0000-0001-6222-2272
- Email: enrico.valdinoci@uwa.edu.au
- Received by editor(s): November 13, 2023
- Received by editor(s) in revised form: March 26, 2024
- Published electronically: July 31, 2024
- Additional Notes: This research had been supported by the Australian Laureate Fellowship FL190100081 “Minimal surfaces, free boundaries and partial differential equations”.
- Communicated by: Ryan Hynd
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 3923-3939
- MSC (2020): Primary 35R11, 35B50
- DOI: https://doi.org/10.1090/proc/16899
- MathSciNet review: 4781985