Higher order embeddings via the basepoint-freeness threshold
HTML articles powered by AMS MathViewer
- by Federico Caucci;
- Proc. Amer. Math. Soc. 152 (2024), 3623-3628
- DOI: https://doi.org/10.1090/proc/16901
- Published electronically: July 17, 2024
- HTML | PDF | Request permission
Abstract:
In this note, we relate the basepoint-freeness threshold of a polarized abelian variety, introduced by Jiang and Pareschi, with $k$-jet very ampleness. Then, we derive several applications of this fact, including a criterion for the $k$-very ampleness of Kummer varieties.References
- Daniele Agostini, Asymptotic syzygies and higher order embeddings, Int. Math. Res. Not. IMRN 4 (2022), 2934–2967. MR 4381936, DOI 10.1093/imrn/rnaa208
- Th. Bauer and T. Szemberg, Higher order embeddings of abelian varieties, Math. Z. 224 (1997), no. 3, 449–455. MR 1439201, DOI 10.1007/PL00004591
- M. Beltrametti, P. Francia, and A. J. Sommese, On Reider’s method and higher order embeddings, Duke Math. J. 58 (1989), no. 2, 425–439. MR 1016428, DOI 10.1215/S0012-7094-89-05819-5
- Federico Caucci, The basepoint-freeness threshold and syzygies of abelian varieties, Algebra Number Theory 14 (2020), no. 4, 947–960. MR 4114062, DOI 10.2140/ant.2020.14.947
- Federico Caucci, Syzygies of Kummer varieties, Trans. Amer. Math. Soc. 377 (2024), no. 2, 1357–1370. MR 4688553, DOI 10.1090/tran/9062
- Lawrence Ein and Robert Lazarsfeld, The gonality conjecture on syzygies of algebraic curves of large degree, Publ. Math. Inst. Hautes Études Sci. 122 (2015), 301–313. MR 3415069, DOI 10.1007/s10240-015-0072-2
- Lawrence Ein, Robert Lazarsfeld, and David Yang, A vanishing theorem for weight-one syzygies, Algebra Number Theory 10 (2016), no. 9, 1965–1981. MR 3576117, DOI 10.2140/ant.2016.10.1965
- Atsushi Ito, Basepoint-freeness thresholds and higher syzygies on abelian threefolds, Algebr. Geom. 9 (2022), no. 6, 762–787. MR 4518246
- Atsushi Ito, M-regularity of $\Bbb {Q}$-twisted sheaves and its application to linear systems on abelian varieties, Trans. Amer. Math. Soc. 375 (2022), no. 9, 6653–6673. MR 4474904, DOI 10.1090/tran/8725
- Zhi Jiang, Cohomological rank functions and syzygies of abelian varieties, Math. Z. 300 (2022), no. 4, 3341–3355. MR 4395094, DOI 10.1007/s00209-021-02761-3
- Zhi Jiang and Giuseppe Pareschi, Cohomological rank functions on abelian varieties, Ann. Sci. Éc. Norm. Supér. (4) 53 (2020), no. 4, 815–846 (English, with English and French summaries). MR 4157109, DOI 10.24033/asens.2435
- Shigeru Mukai, Duality between $D(X)$ and $D(\hat X)$ with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153–175. MR 607081, DOI 10.1017/S002776300001922X
- Giuseppe Pareschi and Mihnea Popa, Regularity on abelian varieties. II. Basic results on linear series and defining equations, J. Algebraic Geom. 13 (2004), no. 1, 167–193. MR 2008719, DOI 10.1090/S1056-3911-03-00345-X
- Giuseppe Pareschi and Mihnea Popa, Regularity on abelian varieties III: relationship with generic vanishing and applications, Grassmannians, moduli spaces and vector bundles, Clay Math. Proc., vol. 14, Amer. Math. Soc., Providence, RI, 2011, pp. 141–167. MR 2807853
- Ryuji Sasaki, Bounds on the degree of the equations defining Kummer varieties, J. Math. Soc. Japan 33 (1981), no. 2, 323–333. MR 607947, DOI 10.2969/jmsj/03320323
- Claire Voisin, Green’s generic syzygy conjecture for curves of even genus lying on a $K3$ surface, J. Eur. Math. Soc. (JEMS) 4 (2002), no. 4, 363–404. MR 1941089, DOI 10.1007/s100970200042
- David H. Yang, $S_n$-equivariant sheaves and Koszul cohomology, Res. Math. Sci. 1 (2014), Art. 10, 6. MR 3375645, DOI 10.1186/s40687-014-0010-9
Bibliographic Information
- Federico Caucci
- Affiliation: Dipartimento di Matematica e Informatica, Università di Ferrara, Via Machiavelli 30, 44121 Ferrara, Italy
- MR Author ID: 1243180
- ORCID: 0000-0003-0018-069X
- Email: federico.caucci@unife.it
- Received by editor(s): November 30, 2023
- Received by editor(s) in revised form: January 5, 2024
- Published electronically: July 17, 2024
- Additional Notes: The author is a member of INdAM-GNSAGA
- Communicated by: Claudia Polini
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 3623-3628
- MSC (2020): Primary 14C20, 14F17; Secondary 14K05
- DOI: https://doi.org/10.1090/proc/16901
- MathSciNet review: 4781959