Invariant connections on non-irreducible symmetric spaces with simple Lie group
HTML articles powered by AMS MathViewer
- by Othmane Dani, Abdelhak Abouqateb and Saïd Benayadi;
- Proc. Amer. Math. Soc. 152 (2024), 4003-4013
- DOI: https://doi.org/10.1090/proc/16903
- Published electronically: July 17, 2024
- HTML | PDF | Request permission
Abstract:
Consider a symmetric space $G/H$ with simple Lie group $G$. We demonstrate that when $G/H$ is not irreducible, it is necessarily even dimensional and noncompact. Furthermore, the subgroup $H$ is also both noncompact and non-semisimple. Additionally, we establish that the only $G$-invariant connection on $G/H$ is the canonical connection. On the other hand, we show that if $G/H$ has an odd dimension, it must be irreducible, and the subgroup $H$ must be semisimple. Finally, we present an explicit example, and we show that there exists no other torsion-free $G$-invariant connection on a symmetric space $G/H$ with semisimple Lie group $G$ which has the same curvature as the canonical one.References
- Saïd Benayadi and Mohamed Boucetta, Special bi-invariant linear connections on Lie groups and finite dimensional Poisson structures, Differential Geom. Appl. 36 (2014), 66–89. MR 3262898, DOI 10.1016/j.difgeo.2014.07.006
- Marcel Berger, Les espaces symétriques noncompacts, Annales scientifiques de l’École normale supérieure, 1957, pp. 85–177.
- Nicolas Bourbaki, Lie groups and Lie algebras: Chapters 1–3, Springer Science & Business Media, Berlin, Heidelberg, 1989.
- Andreas Čap and Jan Slovák, Parabolic geometries. I, Mathematical Surveys and Monographs, vol. 154, American Mathematical Society, Providence, RI, 2009. Background and general theory. MR 2532439, DOI 10.1090/surv/154
- Ioannis Chrysikos, Invariant connections with skew-torsion and $\nabla$-Einstein manifolds, J. Lie Theory 26 (2016), no. 1, 11–48. MR 3384980
- Ioannis Chrysikos, Christian O’Cadiz Gustad, and Henrik Winther, Invariant connections and $\nabla$-Einstein structures on isotropy irreducible spaces, J. Geom. Phys. 138 (2019), 257–284. MR 3945042, DOI 10.1016/j.geomphys.2018.10.012
- Othmane Dani and Abdelhak Abouqateb, Special affine connections on symmetric spaces, arXiv:2312.07924, 2023.
- Cristina Draper, Antonio Garvín, and Francisco J. Palomo, Invariant affine connections on odd-dimensional spheres, Ann. Global Anal. Geom. 49 (2016), no. 3, 213–251. MR 3485984, DOI 10.1007/s10455-015-9489-6
- Alberto Elduque and Hyo Chul Myung, The reductive pair $(B_4,B_3)$ and affine connections on $S^{15}$, J. Algebra 227 (2000), no. 2, 504–531. MR 1759833, DOI 10.1006/jabr.1999.8139
- H. Turner Laquer, Invariant affine connections on symmetric spaces, Proc. Amer. Math. Soc. 115 (1992), no. 2, 447–454. MR 1107273, DOI 10.1090/S0002-9939-1992-1107273-6
- Katsumi Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33–65. MR 59050, DOI 10.2307/2372398
Bibliographic Information
- Othmane Dani
- Affiliation: Department of Mathematics, Faculty of Sciences and Technologies, Cadi Ayyad University, B.P.549 Gueliz Marrakesh, Morocco
- Email: othmanedani@gmail.com
- Abdelhak Abouqateb
- Affiliation: Department of Mathematics, Faculty of Sciences and Technologies, Cadi Ayyad University, B.P.549 Gueliz Marrakesh, Morocco
- MR Author ID: 315988
- ORCID: 0000-0002-5200-8026
- Email: a.abouqateb@uca.ac.ma
- Saïd Benayadi
- Affiliation: Université de Lorraine, Laboratoire IECL, CNRS-UMR $7502$, UFR MIM, $3$ rue Augustin Frenel, BP $45112$, $57073$ Metz Cedex $03$, France
- ORCID: 0000-0001-9307-097X
- Email: said.benayadi@univ-lorraine.fr
- Received by editor(s): December 22, 2023
- Published electronically: July 17, 2024
- Communicated by: Jiaping Wang
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 4003-4013
- MSC (2020): Primary 53B05, 53C05, 53C07, 53C30, 53C35
- DOI: https://doi.org/10.1090/proc/16903
- MathSciNet review: 4781991