A variance-sensitive Gaussian concentration inequality
HTML articles powered by AMS MathViewer
- by Nguyen Tien Dung;
- Proc. Amer. Math. Soc. 152 (2024), 4057-4065
- DOI: https://doi.org/10.1090/proc/16905
- Published electronically: July 19, 2024
- HTML | PDF | Request permission
Abstract:
In this note, we obtain a Gaussian concentration inequality for a class of non-Lipschitz functions. In the one-dimensional case, our results supplement those established by Paouris and Valettas [Ann. Probab. 46 (2018), pp. 1441–1454].References
- Radosław Adamczak and PawełWolff, Concentration inequalities for non-Lipschitz functions with bounded derivatives of higher order, Probab. Theory Related Fields 162 (2015), no. 3-4, 531–586. MR 3383337, DOI 10.1007/s00440-014-0579-3
- Robert J. Adler and Jonathan E. Taylor, Random fields and geometry, Springer Monographs in Mathematics, Springer, New York, 2007. MR 2319516
- Vladimir I. Bogachev, Gaussian measures, Mathematical Surveys and Monographs, vol. 62, American Mathematical Society, Providence, RI, 1998. MR 1642391, DOI 10.1090/surv/062
- Arijit Chakrabarty and Gennady Samorodnitsky, Asymptotic behaviour of high Gaussian minima, Stochastic Process. Appl. 128 (2018), no. 7, 2297–2324. MR 3804794, DOI 10.1016/j.spa.2017.09.008
- S. Chatterjee, An error bound in the Sudakov-Fernique inequality, arXiv:math/0510424, 2005.
- N. T. Dung, An improved bound for the Gaussian concentration inequality, arXiv:1904.03674, 2019.
- Stanisław Kwapień, A remark on the median and the expectation of convex functions of Gaussian vectors, Probability in Banach spaces, 9 (Sandjberg, 1993) Progr. Probab., vol. 35, Birkhäuser Boston, Boston, MA, 1994, pp. 271–272. MR 1308523
- Grigoris Paouris and Petros Valettas, A Gaussian small deviation inequality for convex functions, Ann. Probab. 46 (2018), no. 3, 1441–1454. MR 3785592, DOI 10.1214/17-AOP1206
- Grigoris Paouris and Petros Valettas, Variance estimates and almost Euclidean structure, Adv. Geom. 19 (2019), no. 2, 165–189. MR 3940918, DOI 10.1515/advgeom-2018-0030
- Gilles Pisier, Probabilistic methods in the geometry of Banach spaces, Probability and analysis (Varenna, 1985) Lecture Notes in Math., vol. 1206, Springer, Berlin, 1986, pp. 167–241. MR 864714, DOI 10.1007/BFb0076302
- Paul-Marie Samson, Concentration inequalities for convex functions on product spaces, Stochastic inequalities and applications, Progr. Probab., vol. 56, Birkhäuser, Basel, 2003, pp. 33–52. MR 2073425
- Michel Talagrand, Spin glasses: a challenge for mathematicians, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 46, Springer-Verlag, Berlin, 2003. Cavity and mean field models. MR 1993891
- Kevin Tanguy, Improved one-sided deviation inequalities under regularity assumptions for product measures, ESAIM Probab. Stat. 23 (2019), 979–990. MR 4046859, DOI 10.1051/ps/2019014
- Petros Valettas, On the tightness of Gaussian concentration for convex functions, J. Anal. Math. 139 (2019), no. 1, 341–367. MR 4041105, DOI 10.1007/s11854-021-0073-7
Bibliographic Information
- Nguyen Tien Dung
- Affiliation: Department of Mathematics, VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi 084, Vietnam
- Email: dung@hus.edu.vn, ntiendung@vnu.edu.vn
- Received by editor(s): October 6, 2019
- Received by editor(s) in revised form: July 8, 2022
- Published electronically: July 19, 2024
- Communicated by: David Levin
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 4057-4065
- MSC (2020): Primary 60E15
- DOI: https://doi.org/10.1090/proc/16905
- MathSciNet review: 4781995