A short note on $\pi _1(\operatorname {Diff}_{\partial } D^{4k})$ for $k\geq 3$
HTML articles powered by AMS MathViewer
- by Wei Wang;
- Proc. Amer. Math. Soc. 152 (2024), 4067-4073
- DOI: https://doi.org/10.1090/proc/16908
- Published electronically: August 1, 2024
- HTML | PDF | Request permission
Abstract:
Let $\operatorname {Diff}_{\partial }(D^{n})$ be the topological group of diffeomorphisms of $D^{n}$ which agree with the identity near the boundary. In this short note, we compute the fundamental group $\pi _1 \operatorname {Diff}_{\partial }(D^{4k})$ for $k\geq 3$.References
- P. L. Antonelli, D. Burghelea, and P. J. Kahn, The non-finite homotopy type of some diffeomorphism groups, Topology 11 (1972), 1–49. MR 292106, DOI 10.1016/0040-9383(72)90021-3
- G. Brumfiel, On the homotopy groups of $\textrm {BPL}$ and $\textrm {PL/O}$, Ann. of Math. (2) 88 (1968), 291–311. MR 234458, DOI 10.2307/1970576
- Dan Burghelea and Richard Lashof, The homotopy type of the space of diffeomorphisms. I, II, Trans. Amer. Math. Soc. 196 (1974), 1–36; ibid. 196 (1974), 37–50. MR 356103, DOI 10.1090/S0002-9947-1974-0356103-2
- Dan Burghelea, Richard Lashof, and Melvin Rothenberg, Groups of automorphisms of manifolds, Lecture Notes in Mathematics, Vol. 473, Springer-Verlag, Berlin-New York, 1975. With an appendix (“The topological category”) by E. Pedersen. MR 380841, DOI 10.1007/BFb0079981
- Jean Cerf, The pseudo-isotopy theorem for simply connected differentiable manifolds, Manifolds–Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Math., Vol. 197, Springer, Berlin-New York, 1971, pp. 76–82. MR 290404
- Diarmuid Crowley and Thomas Schick, The Gromoll filtration, $KO$-characteristic classes and metrics of positive scalar curvature, Geom. Topol. 17 (2013), no. 3, 1773–1789. MR 3073935, DOI 10.2140/gt.2013.17.1773
- Diarmuid Crowley, Thomas Schick, and Wolfgang Steimle, Harmonic spinors and metrics of positive curvature via the Gromoll filtration and Toda brackets, J. Topol. 11 (2018), no. 4, 1077–1099. MR 3989438, DOI 10.1112/topo.12081
- F. T. Farrell and W. C. Hsiang, On the rational homotopy groups of the diffeomorphism groups of discs, spheres and aspherical manifolds, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, RI, 1978, pp. 325–337. MR 520509
- A. E. Hatcher, Concordance spaces, higher simple-homotopy theory, and applications, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, RI, 1978, pp. 3–21. MR 520490
- A. Hatcher, A 50-Year View of Diffeomorphism Groups, talk slides, 50th Cornell Topology Festival 2012, available at: https://pi.math.cornell.edu/~hatcher/Papers/Diff(M)2012.pdf
- Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, vol. 33, Springer-Verlag, New York, 1994. Corrected reprint of the 1976 original. MR 1336822
- Kiyoshi Igusa, The stability theorem for smooth pseudoisotopies, $K$-Theory 2 (1988), no. 1-2, vi+355. MR 972368, DOI 10.1007/BF00533643
- Daniel C. Isaksen, Guozhen Wang, and Zhouli Xu, Stable homotopy groups of spheres: from dimension 0 to 90, Publ. Math. Inst. Hautes Études Sci. 137 (2023), 107–243. MR 4588596, DOI 10.1007/s10240-023-00139-1
- Bjørn Jahren, Pseudoisotopies and the Bökstedt trace, Geom. Dedicata 148 (2010), 245–261. MR 2721626, DOI 10.1007/s10711-009-9441-7
- Manuel Krannich, A homological approach to pseudoisotopy theory. I, Invent. Math. 227 (2022), no. 3, 1093–1167. MR 4384194, DOI 10.1007/s00222-021-01077-7
- A. Kupers, Lectures on diffeomorphism groups of manifolds, https://people.math.harvard.edu/~kupers/teaching/272x/book.pdf, 2019.
- S. MacLane, Homology, Reprint of the 1975 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995.
- John Rognes, Two-primary algebraic $K$-theory of pointed spaces, Topology 41 (2002), no. 5, 873–926. MR 1923990, DOI 10.1016/S0040-9383(01)00005-2
- John Rognes, The smooth Whitehead spectrum of a point at odd regular primes, Geom. Topol. 7 (2003), 155–184. MR 1988283, DOI 10.2140/gt.2003.7.155
- Oscar Randal-Williams, Diffeomorphisms of discs, ICM—International Congress of Mathematicians. Vol. 4. Sections 5–8, EMS Press, Berlin, [2023] ©2023, pp. 2856–2878. MR 4680344
- S. Smale, On the structure of manifolds, Amer. J. Math. 84 (1962), 387–399. MR 153022, DOI 10.2307/2372978
- T. Watanabe, Some exotic nontrivial elements of the rational homotopy groups of $\operatorname {Diff}(S^4)$, arXiv:1812.02448, 2018.
- Michael Weiss, Sphères exotiques et l’espace de Whitehead, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 17, 885–888 (French, with English summary). MR 870913
- Michael Weiss and Bruce Williams, Automorphisms of manifolds, Surveys on surgery theory, Vol. 2, Ann. of Math. Stud., vol. 149, Princeton Univ. Press, Princeton, NJ, 2001, pp. 165–220. MR 1818774
Bibliographic Information
- Wei Wang
- Affiliation: Department of Mathematics and Computational Science, Shanghai Ocean University, Shanghai 201306, People’s Republic of China
- ORCID: 0000-0002-8454-8705
- Email: weiwang@amss.ac.cn
- Received by editor(s): July 19, 2023
- Received by editor(s) in revised form: September 12, 2023, February 8, 2024, and April 9, 2024
- Published electronically: August 1, 2024
- Communicated by: Julie Bergner
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 4067-4073
- MSC (2020): Primary 57R50, 57R60; Secondary 57T20
- DOI: https://doi.org/10.1090/proc/16908
- MathSciNet review: 4781996