Nilpotent global centers of generalized polynomial Kukles system with degree three
HTML articles powered by AMS MathViewer
- by Hebai Chen, Zhaosheng Feng and Rui Zhang;
- Proc. Amer. Math. Soc. 152 (2024), 3785-3800
- DOI: https://doi.org/10.1090/proc/16915
- Published electronically: July 31, 2024
- HTML | PDF | Request permission
Abstract:
In this paper, we study and characterize the nilpotent global centers of a generalized polynomial Kukles system with degree three. A sufficient and necessary condition of global centers is established under certain parametric conditions.References
- M. J. Álvarez and A. Gasull, Generating limit cycles from a nilpotent critical point via normal forms, J. Math. Anal. Appl. 318 (2006), no. 1, 271–287. MR 2210887, DOI 10.1016/j.jmaa.2005.05.064
- Luis Barreira, Jaume Llibre, and Claudia Valls, Linear type global centers of cubic Hamiltonian systems symmetric with respect to the $x$-axis, Electron. J. Differential Equations (2020), Paper No. 57, 14. MR 4113455
- L. Barreira, J. Llibre, and C. Valls, On the global nilpotent centers of cubic polynomial Hamiltonian systems, Differ. Equ. Dyn. Syst. (2022), 1–11, DOI 10.1007/s12591-022-00606-x.
- L. A. Čerkas, Conditions for a center for the equation $yy^{\prime } =\sum ^{3}_{i=0}p_{i}(x)y^{i}$, Differentsial′nye Uravneniya 14 (1978), no. 9, 1594–1600, 1722 (Russian). MR 509518
- Roberto Conti, Centers of planar polynomial systems. A review, Matematiche (Catania) 53 (1998), no. 2, 207–240 (1999). MR 1710759
- Colin Christopher and Chengzhi Li, Limit cycles of differential equations, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2007. MR 2325099
- Ilker E. Colak, Jaume Llibre, and Claudia Valls, Hamiltonian linear type centers of linear plus cubic homogeneous polynomial vector fields, J. Differential Equations 257 (2014), no. 5, 1623–1661. MR 3217051, DOI 10.1016/j.jde.2014.05.024
- Ilker E. Colak, Jaume Llibre, and Claudia Valls, Hamiltonian nilpotent centers of linear plus cubic homogeneous polynomial vector fields, Adv. Math. 259 (2014), 655–687. MR 3197668, DOI 10.1016/j.aim.2014.04.002
- Hebai Chen, Rui Zhang, and Xiang Zhang, Dynamics of polynomial Rayleigh-Duffing system near infinity and its global phase portraits with a center, Adv. Math. 433 (2023), Paper No. 109326, 37. MR 4649288, DOI 10.1016/j.aim.2023.109326
- Fabio Scalco Dias, Luis Fernando Mello, and Claudia Valls, Kukles systems of degree three with global centers, Bull. Braz. Math. Soc. (N.S.) 54 (2023), no. 4, Paper No. 46, 15. MR 4635025, DOI 10.1007/s00574-023-00363-7
- H. Dulac, Détermination et integration d’une certaine classe déquations différentielle ayant par point singulier un centre, Bull. Sci. Math. Sér., 32 (1908), 230–252.
- Isaac A. García and Jaume Llibre, Polynomial Liénard systems with a nilpotent global center, Rend. Circ. Mat. Palermo (2) 72 (2023), no. 7, 3625–3636. MR 4645208, DOI 10.1007/s12215-022-00850-8
- Johanna D. García-Saldaña, Jaume Llibre, and Claudia Valls, Linear type global centers of linear systems with cubic homogeneous nonlinearities, Rend. Circ. Mat. Palermo (2) 69 (2020), no. 3, 771–785. MR 4168139, DOI 10.1007/s12215-019-00433-0
- J. D. García-Saldaña, Jaume Llibre, and Claudia Valls, Nilpotent global centers of linear systems with cubic homogeneous nonlinearities, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 30 (2020), no. 1, 2050010, 12. MR 4064943, DOI 10.1142/S0218127420500108
- Marcello Galeotti and Massimo Villarini, Some properties of planar polynomial systems of even degree, Ann. Mat. Pura Appl. (4) 161 (1992), 299–313. MR 1174822, DOI 10.1007/BF01759643
- J. M. Hill, N. G. Lloyd, and J. M. Pearson, Algorithmic derivation of isochronicity conditions, Nonlinear Anal. 67 (2007), no. 1, 52–69. MR 2313879, DOI 10.1016/j.na.2006.04.018
- H. He, J. Llibre, and D. Xiao, Planar polynomial Hamiltonian differential systems with global centers (in Chinese), Sci. Sin. Math. 52 (2022), 617–628, DOI 10.1360/SCM-2020-0602.
- Hongjin He and Dongmei Xiao, On the global center of planar polynomial differential systems and the related problems, J. Appl. Anal. Comput. 12 (2022), no. 3, 1141–1157. MR 4432660, DOI 10.11948/20220157
- I. S. Koukless, Sur quelques cas de distinction entre un foyer et un centre, C. R. (Doklady) Acad. Sci. URSS (N.S.) 42 (1944), 208–211 (French). MR 11356
- A. A. Kushner, A. P. Sadovskiĭ, and A. P. Sadovskiĭ, Center conditions for Liénard-type systems of degree four, Vestn. Beloruss. Gos. Univ. Ser. 1 Fiz. Mat. Inform. 2 (2011), 119–122, 152 (Russian, with English and Russian summaries). MR 2932275
- Feng Li, Ting Chen, Yuanyuan Liu, and Pei Yu, A complete classification on the center-focus problem of a generalized cubic Kukles system with a nilpotent singular point, Qual. Theory Dyn. Syst. 23 (2024), no. 1, Paper No. 8, 35. MR 4645188, DOI 10.1007/s12346-023-00863-3
- Yirong Liu and Jibin Li, New study on the center problem and bifurcations of limit cycles for the Lyapunov system. II, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 19 (2009), no. 9, 3087–3099. MR 2582530, DOI 10.1142/S0218127409024669
- F. Li and S. Li, Integrability and limit cycles in cubic Kukles systems with a nilpotent singular point, Nonlinear Dyn. 96 (2019), 553–563.
- N. G. Lloyd and J. M. Pearson, Computing centre conditions for certain cubic systems, J. Comput. Appl. Math. 40 (1992), no. 3, 323–336. MR 1170911, DOI 10.1016/0377-0427(92)90188-4
- Jaume Llibre and Claudia Valls, Global centers of the generalized polynomial Liénard differential systems, J. Differential Equations 330 (2022), 66–80. MR 4428796, DOI 10.1016/j.jde.2022.05.013
- Jaume Llibre and Claudia Valls, Reversible global centres with quintic homogeneous nonlinearities, Dyn. Syst. 38 (2023), no. 4, 632–653. MR 4653864, DOI 10.1080/14689367.2023.2228737
- Jaume Llibre and Claudia Valls, Polynomial differential systems with even degree have no global centers, J. Math. Anal. Appl. 503 (2021), no. 1, Paper No. 125281, 5. MR 4256192, DOI 10.1016/j.jmaa.2021.125281
- H. Poincaré, Mémoire sur les courbes définies par les équations différentielles, J. Math. 37 (1881), 375-422; Oeuvres de Henri Poincaré, Gauthier-Villars, Paris, 1951, pp. 3–84.
- A. P. Sadovskiĭ and A. P. Sadovskiĭ, Solution of the center and focus problem for a cubic system of nonlinear oscillations, Differ. Uravn. 33 (1997), no. 2, 236–244, 286 (Russian, with Russian summary); English transl., Differential Equations 33 (1997), no. 2, 236–244. MR 1609880
- A. P. Sadovskiĭ, A. P. Sadovskiĭ, and T. V. Shcheglova, Solution of the center-focus problem for a cubic system with nine parameters, Differ. Uravn. 47 (2011), no. 2, 209–224 (Russian, with Russian summary); English transl., Differ. Equ. 47 (2011), no. 2, 208–223. MR 2895676, DOI 10.1134/S0012266111020078
- A. P. Sadovskii and T. V. Shcheglova, Center conditions for a polynomial differential system, Differ. Equ. 49 (2013), no. 2, 151–165. Translation of Differ. Uravn. 49 (2013), no. 2, 151–164. MR 3187859, DOI 10.1134/S001226611302002X
- Zhi Fen Zhang, Tong Ren Ding, Wen Zao Huang, and Zhen Xi Dong, Qualitative theory of differential equations, Translations of Mathematical Monographs, vol. 101, American Mathematical Society, Providence, RI, 1992. Translated from the Chinese by Anthony Wing Kwok Leung. MR 1175631, DOI 10.1090/mmono/101
Bibliographic Information
- Hebai Chen
- Affiliation: School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha, Hunan 410083, People’s Republic of China
- MR Author ID: 1112845
- ORCID: 0000-0003-1601-1014
- Email: chen_hebai@csu.edu.cn
- Zhaosheng Feng
- Affiliation: School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley, Edinburg, Texas 78539
- MR Author ID: 619542
- ORCID: 0000-0003-2782-4539
- Email: zhaosheng.feng@utrgv.edu
- Rui Zhang
- Affiliation: School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha, Hunan 410083, People’s Republic of China
- ORCID: 0000-0002-6146-543X
- Email: zhang_rui@csu.edu.cn
- Received by editor(s): February 2, 2024
- Published electronically: July 31, 2024
- Additional Notes: The first author and the third author were supported by National Natural Science Foundation of China (No. 12322109, 12171485) and Science and Technology Innovation Program of Hunan Province (No. 2023RC3040). The second author was partially supported by NSF DMS-2316952 and Carlos and Stephanie Manrique de Lara Endowment Award.
The third author is the corresponding author - Communicated by: Wenxian Shen
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 3785-3800
- MSC (2020): Primary 34C07, 37D05
- DOI: https://doi.org/10.1090/proc/16915
- MathSciNet review: 4781974