Orthogonality preserving maps on a Grassmann space in semifinite factors
HTML articles powered by AMS MathViewer
- by Weijuan Shi, Junhao Shen, Yan-Ni Dou and Haiyan Zhang;
- Proc. Amer. Math. Soc. 152 (2024), 3831-3840
- DOI: https://doi.org/10.1090/proc/16933
- Published electronically: July 31, 2024
- HTML | PDF | Request permission
Abstract:
Let $\mathcal M$ be a semifinite factor with a fixed faithful normal semifinite tracial weight $\tau$ such that $\tau (I)=\infty$. Denote by $\mathscr P(\mathcal M,\tau )$ the set of all projections in $\mathcal M$ and $\mathscr P^{\infty }(\mathcal M,\tau )=\{P\in \mathscr P(\mathcal M,\tau ): \tau (P)=\tau (I-P)=\infty \}$. In this paper, as a generalization of Uhlhorn’s theorem, we establish the general form of orthogonality preserving maps on the Grassmann space $\mathscr P^{\infty }(\mathcal M,\tau )$. We prove that every such map on $\mathscr P^{\infty }(\mathcal M,\tau )$ can be extended to a Jordan $*$-isomorphism $\rho$ of $\mathcal M$ onto $\mathcal M$.References
- A. Böttcher and I. M. Spitkovsky, A gentle guide to the basics of two projections theory, Linear Algebra Appl. 432 (2010), no. 6, 1412–1459. MR 2580440, DOI 10.1016/j.laa.2009.11.002
- Fernanda Botelho, James Jamison, and Lajos Molnár, Surjective isometries on Grassmann spaces, J. Funct. Anal. 265 (2013), no. 10, 2226–2238. MR 3091813, DOI 10.1016/j.jfa.2013.07.017
- L. Bracci, G. Morchio, and F. Strocchi, Wigner’s theorem on symmetries in indefinite metric spaces, Comm. Math. Phys. 41 (1975), 289–299. MR 368648, DOI 10.1007/BF01608993
- Georges Chevalier, Wigner’s theorem and its generalizations, Handbook of quantum logic and quantum structures, Elsevier Sci. B. V., Amsterdam, 2007, pp. 429–475. MR 2423613, DOI 10.1016/B978-044452870-4/50032-7
- H. A. Dye, On the geometry of projections in certain operator algebras, Ann. of Math. (2) 61 (1955), 73–89. MR 66568, DOI 10.2307/1969620
- György Pál Gehér, Wigner’s theorem on Grassmann spaces, J. Funct. Anal. 273 (2017), no. 9, 2994–3001. MR 3692328, DOI 10.1016/j.jfa.2017.06.011
- György Pál Gehér and Peter emrl, Isometries of Grassmann spaces, J. Funct. Anal. 270 (2016), no. 4, 1585–1601. MR 3447720, DOI 10.1016/j.jfa.2015.11.018
- György Pál Gehér and Peter emrl, Isometries of Grassmann spaces, II, Adv. Math. 332 (2018), 287–310. MR 3810254, DOI 10.1016/j.aim.2018.05.012
- Weichen Gu, Wenming Wu, and Wei Yuan, Transition probability preserving maps on a Grassmann space in a semifinite factor, J. Math. Anal. Appl. 487 (2020), no. 1, 123957, 7. MR 4066735, DOI 10.1016/j.jmaa.2020.123957
- Peter emrl, Orthogonality preserving transformations on the set of $n$-dimensional subspaces of a Hilbert space, Illinois J. Math. 48 (2004), no. 2, 567–573. MR 2085427
- Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. II, Pure and Applied Mathematics, vol. 100, Academic Press, Inc., Orlando, FL, 1986. Advanced theory. MR 859186, DOI 10.1016/S0079-8169(08)60611-X
- Lajos Molnár, Wigner-type theorem on symmetry transformations in type II factors, Internat. J. Theoret. Phys. 39 (2000), no. 6, 1463–1466. MR 1788502, DOI 10.1023/A:1003675809660
- Lajos Molnár, Transformations on the set of all $n$-dimensional subspaces of a Hilbert space preserving principal angles, Comm. Math. Phys. 217 (2001), no. 2, 409–421. MR 1821230, DOI 10.1007/PL00005551
- Michiya Mori, Isometries between projection lattices of von Neumann algebras, J. Funct. Anal. 276 (2019), no. 11, 3511–3528. MR 3944303, DOI 10.1016/j.jfa.2018.10.011
- M. Mori, Isometries between projection lattices of von Neumann algebras, Preservers: Modern Aspects and New Directions, Queen’s University Belfast, 2018.
- Mark Pankov, Geometric version of Wigner’s theorem for Hilbert Grassmannians, J. Math. Anal. Appl. 459 (2018), no. 1, 135–144. MR 3730432, DOI 10.1016/j.jmaa.2017.10.065
- Wenhua Qian, Liguang Wang, Wenming Wu, and Wei Yuan, Wigner-type theorem on transition probability preserving maps in semifinite factors, J. Funct. Anal. 276 (2019), no. 6, 1773–1787. MR 3912790, DOI 10.1016/j.jfa.2018.05.019
- Peter emrl, Orthogonality preserving transformations on the set of $n$-dimensional subspaces of a Hilbert space, Illinois J. Math. 48 (2004), no. 2, 567–573. MR 2085427
- Weijuan Shi, Junhao Shen, Weichen Gu, and Minghui Ma, $L^p$-isometries of Grassmann spaces in factors of type II, J. Operator Theory 87 (2022), no. 2, 389–412. MR 4396940, DOI 10.7900/jot
- Weijuan Shi, Junhao Shen, and Minghui Ma, Ortho-isomorphisms of Grassmann spaces in semifinite factors, Proc. Amer. Math. Soc. 152 (2024), no. 1, 223–238. MR 4661076, DOI 10.1090/proc/16467
- M. Takesaki, Theory of operator algebras. II, Encyclopaedia of Mathematical Sciences, vol. 125, Springer-Verlag, Berlin, 2003. Operator Algebras and Non-commutative Geometry, 6. MR 1943006, DOI 10.1007/978-3-662-10451-4
- U. Uhlhorn, Representation of symmetry transformations in quantum mechanics, Ark. Fysik 23 (1963), 307–340.
- Eugen Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren, J. W. Edwards, Ann Arbor, MI, 1944 (German). MR 10584
Bibliographic Information
- Weijuan Shi
- Affiliation: School of Mathematics and Statistics, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
- Email: shiweijuan1016@163.com
- Junhao Shen
- Affiliation: Department of Mathematics & Statistics, University of New Hampshire, Durham, New Hampshire 03824
- MR Author ID: 626774
- Email: Junhao.Shen@unh.edu
- Yan-Ni Dou
- Affiliation: School of Mathematics and Statistics, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
- Email: douyn@snnu.edu.cn
- Haiyan Zhang
- Affiliation: School of Mathematics and Statistics, Shangqiu Normal University, Shangqiu 476000, People’s Republic of China
- Email: csqam@163.com
- Received by editor(s): January 17, 2024
- Received by editor(s) in revised form: February 13, 2024
- Published electronically: July 31, 2024
- Additional Notes: This research was supported by the Natural Science Basic Research Plan in Shaanxi Province of China (2023-JC-YB-050), Overseas Students Science and Technology Activities Project Merit Funding in Shaanxi Province (2022-018), Shaanxi Fundamental Science Research Project for Mathematics and Physics (23JSQ038).
- Communicated by: Matthew Kennedy
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 3831-3840
- MSC (2020): Primary 47B49; Secondary 46L10
- DOI: https://doi.org/10.1090/proc/16933
- MathSciNet review: 4781977