On a fixed point formula of Navarro–Rizo
HTML articles powered by AMS MathViewer
- by Benjamin Sambale;
- Proc. Amer. Math. Soc. 152 (2024), 3629-3634
- DOI: https://doi.org/10.1090/proc/16936
- Published electronically: July 19, 2024
- HTML | PDF
Abstract:
Let $G$ be a $\pi$-separable group with a Hall $\pi$-subgroup $H$ or order $n$. For $x\in H$ let $\lambda (x)$ be the number of Hall $\pi$-subgroups of $G$ containing $x$. We show that $\prod _{d\mid n}\prod _{x\in H}\lambda (x^{d})^{\frac {n}{d}\mu (d)}=1$, where $\mu$ is the Möbius function. This generalizes fixed point formulas for coprime actions by Brauer, Wielandt and Navarro–Rizo. We further investigate an additive version of this formula.References
- Brian Hartley and Alexandre Turull, On characters of coprime operator groups and the Glauberman character correspondence, J. Reine Angew. Math. 451 (1994), 175–219. MR 1277300
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 224703, DOI 10.1007/978-3-642-64981-3
- Adalbert Kerber, Applied finite group actions, 2nd ed., Algorithms and Combinatorics, vol. 19, Springer-Verlag, Berlin, 1999. MR 1716962, DOI 10.1007/978-3-662-11167-3
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory, 2nd ed., Dover Publications, Inc., Mineola, NY, 2004. Presentations of groups in terms of generators and relations. MR 2109550
- Gabriel Navarro and Noelia Rizo, A Brauer-Wielandt formula (with an application to character tables), Proc. Amer. Math. Soc. 144 (2016), no. 10, 4199–4204. MR 3531172, DOI 10.1090/proc/13089
- Steven Roman, Field theory, 2nd ed., Graduate Texts in Mathematics, vol. 158, Springer, New York, 2006. MR 2178351
- Benjamin Sambale, Endliche Permutationsgruppen, Springer Spektrum, Wiesbaden, 2017 (German). MR 3930570, DOI 10.1007/978-3-658-17597-9
- Helmut Wielandt, Beziehungen zwischen den Fixpunktzahlen von Automorphismengruppen einer eindlichen Gruppe, Math. Z. 73 (1960), 146–158 (German). MR 117286, DOI 10.1007/BF01162475
Bibliographic Information
- Benjamin Sambale
- Affiliation: Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
- MR Author ID: 928720
- ORCID: 0000-0001-9914-1652
- Email: sambale@math.uni-hannover.de
- Received by editor(s): January 11, 2024
- Published electronically: July 19, 2024
- Communicated by: Martin Liebeck
- © Copyright 2024 by Benjamin Sambale
- Journal: Proc. Amer. Math. Soc. 152 (2024), 3629-3634
- MSC (2020): Primary 20D10, 20D20
- DOI: https://doi.org/10.1090/proc/16936
- MathSciNet review: 4781960