Hodge-Riemann property of Griffiths positive matrices with $(1,1)$-form entries
HTML articles powered by AMS MathViewer
- by Zhangchi Chen;
- Proc. Amer. Math. Soc. 152 (2024), 4115-4130
- DOI: https://doi.org/10.1090/proc/16781
- Published electronically: August 23, 2024
- HTML | PDF | Request permission
Abstract:
The classical Hard Lefschetz theorem (HLT), Hodge-Riemann bilinear relation theorem (HRR) and Lefschetz decomposition theorem (LD) are stated for a power of a Kähler class on a compact Kähler manifold. These theorems are not true for an arbitrary class, even if it contains a smooth strictly positive representative.
Dinh-Nguyên proved the mixed HLT, HRR and LD for a product of arbitrary Kähler classes. Instead of products, they asked whether determinants of Griffiths positive $k\times k$ matrices with $(1,1)$-form entries in $\mathbb {C}^n$ satisfy these theorems in the linear case.
This paper answered their question positively when $k=2$ and $n=2,3$. Moreover, assume that the matrix only has diagonalized entries, for $k=2$ and $n\geqslant 4$, the determinant satisfies HLT for bidegrees $(n-2,0)$, $(n-3,1)$, $(1,n-3)$ and $(0,n-2)$. In particular, for $k=2$ and $n=4,5$ with this extra assumption, the determinant satisfies HRR, HLT and LD.
Two applications: First, a Griffiths positive $2\times 2$ matrix with $(1,1)$-form entries, if all entries are $\mathbb {C}$-linear combinations of the diagonal entries, then its determinant also satisfies these theorems. Second, on a complex torus of dimension $\leqslant 5$, the determinant of a Griffiths positive $2\times 2$ matrix with diagonalized entries satisfies these theorems.
References
- Bo Berndtsson and Nessim Sibony, The $\overline \partial$-equation on a positive current, Invent. Math. 147 (2002), no. 2, 371–428. MR 1881924, DOI 10.1007/s002220100178
- José Bertin, Jean-Pierre Demailly, Luc Illusie, and Chris Peters, Introduction à la théorie de Hodge, Panoramas et Synthèses [Panoramas and Syntheses], vol. 3, Société Mathématique de France, Paris, 1996 (French, with English and French summaries). MR 1409818
- Eduardo Cattani, Mixed Lefschetz theorems and Hodge-Riemann bilinear relations, Int. Math. Res. Not. IMRN 10 (2008), Art. ID rnn025, 20. MR 2429243, DOI 10.1093/imrn/rnn025
- Mark Andrea A. de Cataldo and Luca Migliorini, Intersection forms, topology of maps and motivic decomposition for resolutions of threefolds, Algebraic cycles and motives. Vol. 1, London Math. Soc. Lecture Note Ser., vol. 343, Cambridge Univ. Press, Cambridge, 2007, pp. 102–137. MR 2385301, DOI 10.1017/CBO9780511721496.004
- Tien-Cuong Dinh, Tits alternative for automorphism groups of compact Kähler manifolds, Acta Math. Vietnam. 37 (2012), no. 4, 513–529. MR 3058661
- Tien-Cuong Dinh and Viêt-Anh Nguyên, The mixed Hodge-Riemann bilinear relations for compact Kähler manifolds, Geom. Funct. Anal. 16 (2006), no. 4, 838–849. MR 2255382, DOI 10.1007/s00039-006-0572-9
- Tien-Cuong Dinh and Viêt-Anh Nguyên, On the Lefschetz and Hodge-Riemann theorems, Illinois J. Math. 57 (2013), no. 1, 121–144. MR 3224564
- Tien-Cuong Dinh and Nessim Sibony, Groupes commutatifs d’automorphismes d’une variété kählérienne compacte, Duke Math. J. 123 (2004), no. 2, 311–328 (French, with English and French summaries). MR 2066940, DOI 10.1215/S0012-7094-04-12323-1
- Phillip A. Griffiths, Hermitian differential geometry, Chern classes, and positive vector bundles, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 185–251. MR 258070
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- M. Gromov, Convex sets and Kähler manifolds, Advances in differential geometry and topology, World Sci. Publ., Teaneck, NJ, 1990, pp. 1–38. MR 1095529
- JongHae Keum, Keiji Oguiso, and De-Qi Zhang, Conjecture of Tits type for complex varieties and theorem of Lie-Kolchin type for a cone, Math. Res. Lett. 16 (2009), no. 1, 133–148. MR 2480567, DOI 10.4310/MRL.2009.v16.n1.a13
- A. G. Hovanskiĭ, Newton polyhedra, and the genus of complete intersections, Funktsional. Anal. i Prilozhen. 12 (1978), no. 1, 51–61 (Russian). MR 487230
- A. G. Hovanskiĭ, Algebra and mixed volumes, Springer Berlin Heidelberg, Berlin, Heidelberg, 1988, pp. 182–207.
- Julius Ross and Matei Toma, Hodge-Riemann bilinear relations for Schur classes of ample vector bundles, Ann. Sci. Éc. Norm. Supér. (4) 56 (2023), no. 1, 197–241 (English, with English and French summaries). MR 4563867, DOI 10.24033/asens.2531
- Julius Ross and Matei Toma, Hodge-Riemann relations for Schur classes in the linear and Kähler cases, Int. Math. Res. Not. IMRN 16 (2023), 13780–13816. MR 4631421, DOI 10.1093/imrn/rnac208
- Julius Ross and Matei Toma, On Hodge-Riemann cohomology classes, Birational geometry, Kähler-Einstein metrics and degenerations, Springer Proc. Math. Stat., vol. 409, Springer, Cham, [2023] ©2023, pp. 763–793. MR 4606666, DOI 10.1007/978-3-031-17859-7_{3}9
- Bernard Teissier, Du théorème de l’index de Hodge aux inégalités isopérimétriques, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 4, A287–A289 (French, with English summary). MR 524795
- Bernard Teissier, Variétés toriques et polytopes, Bourbaki Seminar, Vol. 1980/81, Lecture Notes in Math., vol. 901, Springer, Berlin-New York, 1981, pp. 71–84 (French). MR 647489
- V. A. Timorin, Mixed Hodge-Riemann bilinear relations in a linear context, Funktsional. Anal. i Prilozhen. 32 (1998), no. 4, 63–68, 96 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 32 (1998), no. 4, 268–272 (1999). MR 1678857, DOI 10.1007/BF02463209
- Claire Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés [Specialized Courses], vol. 10, Société Mathématique de France, Paris, 2002 (French). MR 1988456, DOI 10.1017/CBO9780511615344
- Jian Xiao, Mixed Hodge-Riemann bilinear relations and $m$-positivity, Sci. China Math. 64 (2021), no. 7, 1703–1714. MR 4280377, DOI 10.1007/s11425-020-1704-2
- De-Qi Zhang, A theorem of Tits type for compact Kähler manifolds, Invent. Math. 176 (2009), no. 3, 449–459. MR 2501294, DOI 10.1007/s00222-008-0166-2
Bibliographic Information
- Zhangchi Chen
- Affiliation: School of Mathematical Sciences, Key Laboratory of MEA (Ministry of Education) and Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China; and Morningside Center of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- MR Author ID: 1280297
- ORCID: 0000-0003-4475-849X
- Email: zcchen@math.ecnu.edu.cn
- Received by editor(s): November 22, 2022
- Received by editor(s) in revised form: December 3, 2023, and January 8, 2024
- Published electronically: August 23, 2024
- Additional Notes: The author was supported in part by Science and Technology Commission of Shanghai Municipality (No.22DZ2229014), the Labex CEMPI (ANR-11-LABX-0007-01), the project QuaSiDy (ANR-21-CE40-0016), and China Postdoctoral Science Foundation (2023M733690).
- Communicated by: Rachel Pries
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 4115-4130
- MSC (2020): Primary 15A15, 32Q15, 58A14
- DOI: https://doi.org/10.1090/proc/16781
- MathSciNet review: 4806365