Estimation of the eigenvalues and the integral of the eigenfunctions of the Newtonian potential operator
HTML articles powered by AMS MathViewer
- by Abdulaziz Alsenafi, Ahcene Ghandriche and Mourad Sini;
- Proc. Amer. Math. Soc. 152 (2024), 4379-4392
- DOI: https://doi.org/10.1090/proc/16871
- Published electronically: August 26, 2024
- HTML | PDF | Request permission
Abstract:
We consider the problem of estimating the eigenvalues and the integral of the corresponding eigenfunctions, associated to the Newtonian potential operator, defined in a bounded domain $\Omega \subset \mathbb {R}^{d}$, where $d=2,3$, in terms of the maximum radius of $\Omega$. We first provide these estimations in the particular case of a ball and a disc. Then we extend them to general shapes using a, derived, monotonicity property of the eigenvalues of the Newtonian operator. The derivation of the lower bounds is quite tedious for the 2D-Logarithmic potential operator. Such upper/lower bounds appear naturally while estimating the electric/acoustic fields propagating in $\mathbb {R}^{d}$ in the presence of small scaled and highly heterogeneous particles.References
- Abdulaziz Alsenafi, Ahcene Ghandriche, and Mourad Sini, The Foldy-Lax approximation is valid for nearly resonating frequencies, Z. Angew. Math. Phys. 74 (2023), no. 1, Paper No. 11, 29. MR 4519578, DOI 10.1007/s00033-022-01896-5
- Habib Ammari, Yat Tin Chow, and Jun Zou, Super-resolution in imaging high contrast targets from the perspective of scattering coefficients, J. Math. Pures Appl. (9) 111 (2018), 191–226. MR 3760753, DOI 10.1016/j.matpur.2017.09.008
- Habib Ammari, Alexander Dabrowski, Brian Fitzpatrick, Pierre Millien, and Mourad Sini, Subwavelength resonant dielectric nanoparticles with high refractive indices, Math. Methods Appl. Sci. 42 (2019), no. 18, 6567–6579. MR 4037920, DOI 10.1002/mma.5760
- J. M. Anderson, D. Khavinson, and V. Lomonosov, Spectral properties of some integral operators arising in potential theory, Quart. J. Math. Oxford Ser. (2) 43 (1992), no. 172, 387–407. MR 1188382, DOI 10.1093/qmathj/43.4.387
- H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford, at the Clarendon Press, 1947. MR 22294
- Henri Cartan, Théorie du potentiel newtonien: énergie, capacité, suites de potentiels, Bull. Soc. Math. France 73 (1945), 74–106 (French). MR 15622, DOI 10.24033/bsmf.1368
- David Colton and Rainer Kress, Inverse acoustic and electromagnetic scattering theory, Applied Mathematical Sciences, vol. 93, Springer, Cham, [2019] ©2019. Fourth edition of [ MR1183732]. MR 3971246, DOI 10.1007/978-3-030-30351-8
- Ahcene Ghandriche and Mourad Sini, Mathematical analysis of the photo-acoustic imaging modality using resonating dielectric nano-particles: the 2$D$ TM-model, J. Math. Anal. Appl. 506 (2022), no. 2, Paper No. 125658, 64. MR 4316026, DOI 10.1016/j.jmaa.2021.125658
- T. Sh. Kalmenov and D. Suragan, A boundary condition and spectral problems for the Newton potential, Modern aspects of the theory of partial differential equations, Oper. Theory Adv. Appl., vol. 216, Birkhäuser/Springer Basel AG, Basel, 2011, pp. 187–210. MR 2848241, DOI 10.1007/978-3-0348-0069-3_{1}1
- Oliver Dimon Kellogg, Foundations of potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 31, Springer-Verlag, Berlin-New York, 1967. Reprint from the first edition of 1929. MR 222317, DOI 10.1007/978-3-642-86748-4
- L. J. Landau, Ratios of bessel functions and roots of $\alpha {\LARGE \mathbf {J}_{\nu }}\left ( x \right ) + x {\LARGE \mathbf {J}_{\nu }}\left ( x \right ) = 0$, J. Math. Anal. Appl. 240 (1999), no. 1, 174–204.
- Peter D. Lax, Functional analysis, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2002. MR 1892228
- Michael Ruzhansky and Durvudkhan Suragan, Isoperimetric inequalities for the logarithmic potential operator, J. Math. Anal. Appl. 434 (2016), no. 2, 1676–1689. MR 3415745, DOI 10.1016/j.jmaa.2015.07.041
- Nico M. Temme, Special functions, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996. An introduction to the classical functions of mathematical physics. MR 1376370, DOI 10.1002/9781118032572
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge; The Macmillan Company, New York, 1944. MR 10746
Bibliographic Information
- Abdulaziz Alsenafi
- Affiliation: Department of Mathematics, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
- MR Author ID: 1284818
- Email: abdulaziz.alsenafi@ku.edu.kw
- Ahcene Ghandriche
- Affiliation: Nanjing Center for Applied Mathematics, Nanjing 211135, People’s Republic of China
- MR Author ID: 1429766
- ORCID: 0000-0002-0059-5863
- Email: gh.hsen@njcam.org.cn
- Mourad Sini
- Affiliation: RICAM, Austrian Academy of Sciences, Altenbergerstrasse 69, A-4040 Linz, Austria
- MR Author ID: 699411
- ORCID: 0000-0001-5593-7149
- Email: mourad.sini@oeaw.ac.at
- Received by editor(s): May 18, 2023
- Received by editor(s) in revised form: March 21, 2024
- Published electronically: August 26, 2024
- Additional Notes: The first author is the corresponding author.
- Communicated by: Mourad Ismail
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 4379-4392
- MSC (2020): Primary 31B10, 35R30, 35C20
- DOI: https://doi.org/10.1090/proc/16871
- MathSciNet review: 4806384