Kohler-Jobin meets Ehrhard: The sharp lower bound for the Gaussian principal frequency while the Gaussian torsional rigidity is fixed, via rearrangements
HTML articles powered by AMS MathViewer
- by Orli Herscovici and Galyna V. Livshyts;
- Proc. Amer. Math. Soc. 152 (2024), 4437-4450
- DOI: https://doi.org/10.1090/proc/16889
- Published electronically: August 23, 2024
- HTML | PDF | Request permission
Abstract:
In this note, we provide an adaptation of the Kohler-Jobin rearrangement technique to the setting of the Gauss space. As a result, we prove the Gaussian analogue of the Kohler-Jobin resolution of a conjecture of Pólya-Szegö: when the Gaussian torsional rigidity of a domain is fixed, the Gaussian principal frequency is minimized for the half-space. At the core of this rearrangement technique is the idea of considering a “modified” torsional rigidity, with respect to a given function, and rearranging its layers to half-spaces, in a particular way; the Rayleigh quotient decreases with this procedure.
We emphasize that the analogy of the Gaussian case with the Lebesgue case is not to be expected here, as in addition to some soft symmetrization ideas, the argument relies on the properties of some special functions; the fact that this analogy does hold is somewhat of a miracle.
References
- Frederick J. Almgren Jr. and Elliott H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc. 2 (1989), no. 4, 683–773. MR 1002633, DOI 10.1090/S0894-0347-1989-1002633-4
- Vladimir I. Bogachev, Gaussian measures, Mathematical Surveys and Monographs, vol. 62, American Mathematical Society, Providence, RI, 1998. MR 1642391, DOI 10.1090/surv/062
- Lorenzo Brasco, On torsional rigidity and principal frequencies: an invitation to the Kohler-Jobin rearrangement technique, ESAIM Control Optim. Calc. Var. 20 (2014), no. 2, 315–338. MR 3264206, DOI 10.1051/cocv/2013065
- John E. Brothers and William P. Ziemer, Minimal rearrangements of Sobolev functions, J. Reine Angew. Math. 384 (1988), 153–179. MR 929981
- A. Burchard, A short course on rearrangement inequalities, Lecture Notes, 2009.
- Christer Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math. 30 (1975), no. 2, 207–216. MR 399402, DOI 10.1007/BF01425510
- E. A. Carlen and C. Kerce, On the cases of equality in Bobkov’s inequality and Gaussian rearrangement, Calc. Var. Partial Differential Equations 13 (2001), no. 1, 1–18. MR 1854254, DOI 10.1007/PL00009921
- Antoine Ehrhard, Symétrisation dans l’espace de Gauss, Math. Scand. 53 (1983), no. 2, 281–301 (French). MR 745081, DOI 10.7146/math.scand.a-12035
- Antoine Ehrhard, Éléments extrémaux pour les inégalités de Brunn-Minkowski gaussiennes, Ann. Inst. H. Poincaré Probab. Statist. 22 (1986), no. 2, 149–168 (French, with English summary). MR 850753
- Lawrence C. Evans, Partial differential equations, 2nd ed., Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010. MR 2597943, DOI 10.1090/gsm/019
- Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Revised edition, Textbooks in Mathematics, CRC Press, Boca Raton, FL, 2015. MR 3409135, DOI 10.1201/b18333
- G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, Sitzungsber, Math.-Phys. Kl., Bayer. Akad. Wiss. München, 1923, pp. 169–172.
- Bernhard Kawohl, Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics, vol. 1150, Springer-Verlag, Berlin, 1985. MR 810619, DOI 10.1007/BFb0075060
- S. Kesavan, Symmetrization & applications, Series in Analysis, vol. 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006. MR 2238193, DOI 10.1142/9789812773937
- Marie-Thérèse Kohler-Jobin, Symmetrization with equal Dirichlet integrals, SIAM J. Math. Anal. 13 (1982), no. 1, 153–161. MR 641547, DOI 10.1137/0513011
- Marie-Thérèse Kohler-Jobin, Une méthode de comparaison isopérimétrique de fonctionnelles de domaines de la physique mathématique. I. Une démonstration de la conjecture isopérimétrique $P\lambda ^{2}\geq \pi j^{4}_{0}/2$ de Pólya et Szegő, Z. Angew. Math. Phys. 29 (1978), no. 5, 757–766 (French, with English summary). MR 511908, DOI 10.1007/BF01589287
- E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Math. Ann. 94 (1925), no. 1, 97–100 (German). MR 1512244, DOI 10.1007/BF01208645
- Ülo Lumiste and Jaak Peetre (eds.), Edgar Krahn, 1894–1961, IOS Press, Amsterdam; a copublication with the Estonian Mathematical Society, Tartu, 1994. A centenary volume. MR 1298188
- Elliott H. Lieb and Michael Loss, Analysis, 2nd ed., Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001. MR 1817225, DOI 10.1090/gsm/014
- G. V. Livshyts, On a conjectural symmetric version of Ehrhard’s inequality, Trans. Amer. Math. Soc. (to appear), arXiv:2103.11433, 2021.
- G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, No. 27, Princeton University Press, Princeton, NJ, 1951. MR 43486
- V. N. Sudakov and B. S. Cirel′son, Extremal properties of half-spaces for spherically invariant measures, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 41 (1974), 14–24, 165 (Russian). Problems in the theory of probability distributions, II. MR 365680
- Juan Luis Vázquez, The porous medium equation, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007. Mathematical theory. MR 2286292
- https://en.wikipedia.org/wiki/Coarea_formula?wprov=sfti1.
Bibliographic Information
- Orli Herscovici
- Affiliation: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332
- MR Author ID: 1186325
- ORCID: 0000-0002-3627-7744
- Email: oherscovici3@gatech.edu
- Galyna V. Livshyts
- Affiliation: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332
- MR Author ID: 1015863
- ORCID: 0000-0003-1177-5541
- Email: glivshyts6@math.gatech.edu
- Received by editor(s): May 9, 2022
- Received by editor(s) in revised form: March 27, 2023, August 6, 2023, December 17, 2023, and April 14, 2024
- Published electronically: August 23, 2024
- Additional Notes: The authors were supported by the NSF CAREER DMS-1753260.
- Communicated by: Lu Wang
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 4437-4450
- MSC (2020): Primary 35P05
- DOI: https://doi.org/10.1090/proc/16889
- MathSciNet review: 4806389