Lie semisimple algebras of derivations and varieties of PI-algebras with almost polynomial growth
HTML articles powered by AMS MathViewer
- by Sebastiano Argenti;
- Proc. Amer. Math. Soc. 152 (2024), 4217-4229
- DOI: https://doi.org/10.1090/proc/16896
- Published electronically: July 31, 2024
- HTML | PDF | Request permission
Abstract:
We consider associative algebras with an action by derivations by some finite dimensional and semisimple Lie algebra. We prove that if a differential variety has almost polynomial growth, then it is generated by one of the algebras $UT_2(W_\lambda )$ or $End(W_\mu )$ for some integral dominant weight $\lambda ,\mu$ with $\mu \neq 0$. In the special case $L=\mathfrak {sl}_2$ we prove that this is a sufficient condition too.References
- Eli Aljadeff, Antonio Giambruno, Claudio Procesi, and Amitai Regev, Rings with polynomial identities and finite dimensional representations of algebras, American Mathematical Society Colloquium Publications, vol. 66, American Mathematical Society, [Providence], RI, [2020] ©2020. MR 4249615, DOI 10.1090/coll/066
- Eli Aljadeff, Geoffrey Janssens, and Yakov Karasik, The polynomial part of the codimension growth of affine PI algebras, Adv. Math. 309 (2017), 487–511. MR 3607284, DOI 10.1016/j.aim.2017.01.022
- Eli Aljadeff and Alexei Kanel-Belov, Representability and Specht problem for $G$-graded algebras, Adv. Math. 225 (2010), no. 5, 2391–2428. MR 2680170, DOI 10.1016/j.aim.2010.04.025
- Eli Aljadeff, Alexei Kanel-Belov, and Yaakov Karasik, Kemer’s theorem for affine PI algebras over a field of characteristic zero, J. Pure Appl. Algebra 220 (2016), no. 8, 2771–2808. MR 3471186, DOI 10.1016/j.jpaa.2015.12.008
- Allan Berele and Amitai Regev, Asymptotic behaviour of codimensions of p. i. algebras satisfying Capelli identities, Trans. Amer. Math. Soc. 360 (2008), no. 10, 5155–5172. MR 2415069, DOI 10.1090/S0002-9947-08-04500-5
- Antonio Giambruno, Rafael Bezerra dos Santos, and Ana Cristina Vieira, Identities of *-superalgebras and almost polynomial growth, Linear Multilinear Algebra 64 (2016), no. 3, 484–501. MR 3439445, DOI 10.1080/03081087.2015.1049933
- Antonio Giambruno, Antonio Ioppolo, and Daniela La Mattina, Varieties of algebras with superinvolution of almost polynomial growth, Algebr. Represent. Theory 19 (2016), no. 3, 599–611. MR 3503233, DOI 10.1007/s10468-015-9590-3
- A. S. Gordienko and M. V. Kochetov, Derivations, gradings, actions of algebraic groups, and codimension growth of polynomial identities, Algebr. Represent. Theory 17 (2014), no. 2, 539–563. MR 3181737, DOI 10.1007/s10468-013-9409-z
- A. Giambruno and S. Mishchenko, On star-varieties with almost polynomial growth, Algebra Colloq. 8 (2001), no. 1, 33–42. MR 1885523
- A. Giambruno, S. Mishchenko, and M. Zaicev, Polynomial identities on superalgebras and almost polynomial growth, Comm. Algebra 29 (2001), no. 9, 3787–3800. Special issue dedicated to Alexei Ivanovich Kostrikin. MR 1857014, DOI 10.1081/AGB-100105975
- A. S. Gordienko, Asymptotics of $H$-identities for associative algebras with an $H$-invariant radical, J. Algebra 393 (2013), 92–101. MR 3090060, DOI 10.1016/j.jalgebra.2013.05.032
- Antonio Giambruno and Carla Rizzo, Differential identities, $2\times 2$ upper triangular matrices and varieties of almost polynomial growth, J. Pure Appl. Algebra 223 (2019), no. 4, 1710–1727. MR 3906522, DOI 10.1016/j.jpaa.2018.07.004
- A. Giambruno and M. Zaicev, Exponential codimension growth of PI algebras: an exact estimate, Adv. Math. 142 (1999), no. 2, 221–243. MR 1680198, DOI 10.1006/aima.1998.1790
- Antonio Giambruno and Mikhail Zaicev, Growth of polynomial identities: is the sequence of codimensions eventually non-decreasing?, Bull. Lond. Math. Soc. 46 (2014), no. 4, 771–778. MR 3239615, DOI 10.1112/blms/bdu031
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 323842, DOI 10.1007/978-1-4612-6398-2
- Antonio Ioppolo, Plamen Koshlukov, and Daniela La Mattina, Trace identities and almost polynomial growth, J. Pure Appl. Algebra 225 (2021), no. 2, Paper No. 106501, 20. MR 4125924, DOI 10.1016/j.jpaa.2020.106501
- Antonio Ioppolo and Daniela La Mattina, Polynomial codimension growth of algebras with involutions and superinvolutions, J. Algebra 472 (2017), 519–545. MR 3584889, DOI 10.1016/j.jalgebra.2016.10.007
- Antonio Ioppolo and Fabrizio Martino, Varieties of algebras with pseudoinvolution and polynomial growth, Linear Multilinear Algebra 66 (2018), no. 11, 2286–2304. MR 3851195, DOI 10.1080/03081087.2017.1394257
- Yaakov Karasik, Kemer’s theory for $H$-module algebras with application to the PI exponent, J. Algebra 457 (2016), 194–227. MR 3490081, DOI 10.1016/j.jalgebra.2016.02.021
- Aleksandr Robertovich Kemer, Ideals of identities of associative algebras, Translations of Mathematical Monographs, vol. 87, American Mathematical Society, Providence, RI, 1991. Translated from the Russian by C. W. Kohls. MR 1108620, DOI 10.1090/mmono/087
- Daniela La Mattina, Varieties of superalgebras of almost polynomial growth, J. Algebra 336 (2011), 209–226. MR 2802538, DOI 10.1016/j.jalgebra.2011.03.025
- Daniela La Mattina and Fabrizio Martino, Polynomial growth and star-varieties, J. Pure Appl. Algebra 220 (2016), no. 1, 246–262. MR 3393459, DOI 10.1016/j.jpaa.2015.06.008
- Fabrizio Martino and Carla Rizzo, Differential identities and varieties of almost polynomial growth, Israel J. Math. 254 (2023), no. 1, 243–274. MR 4591834, DOI 10.1007/s11856-022-2396-1
- Giorgio Pietrocola, Matrici binomiali per insiemi di polinomi calcolanti somme di potenze, MatematicaMente (Italian), 2022, no. 298, 299.
- C. Procesi, The invariant theory of $n\times n$ matrices, Advances in Math. 19 (1976), no. 3, 306–381. MR 419491, DOI 10.1016/0001-8708(76)90027-X
- Ju. P. Razmyslov, Identities with trace in full matrix algebras over a field of characteristic zero, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 723–756 (Russian). MR 506414
- Carla Rizzo, Rafael Bezerra dos Santos, and Ana Cristina Vieira, Differential identities and polynomial growth of the codimensions, Algebr. Represent. Theory 26 (2023), no. 5, 2001–2014. MR 4664541, DOI 10.1007/s10468-022-10163-0
- Amitai Regev, Existence of identities in $A\otimes B$, Israel J. Math. 11 (1972), 131–152. MR 314893, DOI 10.1007/BF02762615
- Carla Rizzo, Differential codimensions and exponential growth, Linear Algebra Appl. 675 (2023), 294–311. MR 4616570, DOI 10.1016/j.laa.2023.06.027
- Angela Valenti, Group graded algebras and almost polynomial growth, J. Algebra 334 (2011), 247–254. MR 2787662, DOI 10.1016/j.jalgebra.2011.03.004
Bibliographic Information
- Sebastiano Argenti
- Affiliation: Dipartimento di Matematica, Informatica ed Economia, Università degli Studi della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
- MR Author ID: 1552752
- ORCID: 0000-0001-9324-7501
- Email: sebastiano.argenti@unibas.it
- Received by editor(s): July 24, 2023
- Received by editor(s) in revised form: November 23, 2023, and April 11, 2024
- Published electronically: July 31, 2024
- Communicated by: Sarah Witherspoon
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 4217-4229
- MSC (2020): Primary 16R10, 16R50; Secondary 16W25
- DOI: https://doi.org/10.1090/proc/16896