On maximal dihedral reflection subgroups and generalized noncrossing partitions
HTML articles powered by AMS MathViewer
- by Thomas Gobet;
- Proc. Amer. Math. Soc. 152 (2024), 4095-4101
- DOI: https://doi.org/10.1090/proc/16972
- Published electronically: August 26, 2024
- HTML | PDF
Abstract:
In this note, we give a new proof of a result of Matthew Dyer stating that in an arbitrary Coxeter group $W$, every pair $t,t’$ of distinct reflections lie in a unique maximal dihedral reflection subgroup of $W$. Our proof only relies on the combinatorics of words, in particular we do not use root systems at all. As an application, we deduce a new proof of a recent result of Delucchi-Paolini-Salvetti, stating that the poset $[1,c]_T$ of generalized noncrossing partitions in any Coxeter group of rank $3$ is a lattice. We achieve this by showing the more general statement that any interval of length $3$ in the absolute order on an arbitrary Coxeter group is a lattice. This implies that the interval group attached to any interval $[1,w]_T$ where $w$ is an element of an arbitrary Coxeter group with $\ell _T(w)=3$ is a quasi-Garside group.References
- Barbara Baumeister, Georges Neaime, and Sarah Rees, Interval groups related to finite Coxeter groups I, Algebr. Comb. 6 (2023), no. 2, 471–506. MR 4591595, DOI 10.5802/alco.266
- Philippe Biane, Some properties of crossings and partitions, Discrete Math. 175 (1997), no. 1-3, 41–53. MR 1475837, DOI 10.1016/S0012-365X(96)00139-2
- David Bessis, The dual braid monoid, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 5, 647–683 (English, with English and French summaries). MR 2032983, DOI 10.1016/j.ansens.2003.01.001
- David Bessis, A dual braid monoid for the free group, J. Algebra 302 (2006), no. 1, 55–69. MR 2236594, DOI 10.1016/j.jalgebra.2005.10.025
- Thomas Brady and Colum Watt, Non-crossing partition lattices in finite real reflection groups, Trans. Amer. Math. Soc. 360 (2008), no. 4, 1983–2005. MR 2366971, DOI 10.1090/S0002-9947-07-04282-1
- E. Delucchi, G. Paolini, and M. Salvetti, Dual structures on Coxeter and Artin groups of rank three, Geom. & Topol. (to appear).
- Vinay V. Deodhar, A note on subgroups generated by reflections in Coxeter groups, Arch. Math. (Basel) 53 (1989), no. 6, 543–546. MR 1023969, DOI 10.1007/BF01199813
- F. Digne, Présentations duales des groupes de tresses de type affine $\widetilde A$, Comment. Math. Helv. 81 (2006), no. 1, 23–47 (French, with English summary). MR 2208796, DOI 10.4171/CMH/41
- F. Digne, A Garside presentation for Artin-Tits groups of type $\~C_n$, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 2, 641–666 (English, with English and French summaries). MR 2985512, DOI 10.5802/aif.2690
- M. J. Dyer, Hecke algebras and reflections in Coxeter groups, Ph. D. Thesis, University of Sydney, Australia, 1987.
- Matthew Dyer, Reflection subgroups of Coxeter systems, J. Algebra 135 (1990), no. 1, 57–73. MR 1076077, DOI 10.1016/0021-8693(90)90149-I
- Matthew Dyer, On the “Bruhat graph” of a Coxeter system, Compositio Math. 78 (1991), no. 2, 185–191. MR 1104786
- Matthew J. Dyer, On minimal lengths of expressions of Coxeter group elements as products of reflections, Proc. Amer. Math. Soc. 129 (2001), no. 9, 2591–2595. MR 1838781, DOI 10.1090/S0002-9939-01-05876-2
- M. J. Dyer, $n$-low elements and maximal rank $k$ reflection subgroups of Coxeter groups. part B, J. Algebra 607 (2022), no. part B, 139–180. MR 4441316, DOI 10.1016/j.jalgebra.2021.02.015
- Patrick Dehornoy, François Digne, Eddy Godelle, Daan Krammer, and Jean Michel, Foundations of Garside theory, EMS Tracts in Mathematics, vol. 22, European Mathematical Society (EMS), Zürich, 2015. Author name on title page: Daan Kramer. MR 3362691, DOI 10.4171/139
- Meinolf Geck and Götz Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000. MR 1778802, DOI 10.1093/oso/9780198502500.001.0001
- Jean-Yves Hée, Sur un théorème de V. V. Deodhar et de M. J. Dyer sur les groupes de Coxeter, Innov. Incidence Geom. 20 (2023), no. 2-3, 295–301 (French, with English and French summaries). MR 4641393, DOI 10.2140/iig.2023.20.295
- Jon McCammond, Dual euclidean Artin groups and the failure of the lattice property, J. Algebra 437 (2015), 308–343. MR 3351966, DOI 10.1016/j.jalgebra.2015.04.021
- Georges Neaime, Interval Garside structures related to the affine Artin groups of type $\~A$. part B, J. Algebra 607 (2022), no. part B, 411–436. MR 4441335, DOI 10.1016/j.jalgebra.2020.10.029
- Nathan Reading, Noncrossing partitions and the shard intersection order, J. Algebraic Combin. 33 (2011), no. 4, 483–530. MR 2781960, DOI 10.1007/s10801-010-0255-3
Bibliographic Information
- Thomas Gobet
- Affiliation: Institut Denis Poisson, CNRS UMR 7013, Faculté des Sciences et Techniques, Université de Tours, Parc de Grandmont, 37200 Tours, France
- MR Author ID: 1076592
- Received by editor(s): December 4, 2023
- Published electronically: August 26, 2024
- Communicated by: Martin Liebeck
- © Copyright 2024 by the author
- Journal: Proc. Amer. Math. Soc. 152 (2024), 4095-4101
- MSC (2020): Primary 20F55, 20F36
- DOI: https://doi.org/10.1090/proc/16972