Extended Nullstellensatz proof systems
HTML articles powered by AMS MathViewer
- by Jan Krajíček;
- Proc. Amer. Math. Soc. 152 (2024), 4881-4892
- DOI: https://doi.org/10.1090/proc/16709
- Published electronically: September 17, 2024
- HTML | PDF | Request permission
Abstract:
For a finite set $\mathcal {F}$ of polynomials from ${\mathbf {F}_{p}[\overline x]}$ ($p$ is a fixed prime) containing all polynomials $x^2 - x$, a Nullstellensatz proof of the unsolvability of the system \begin{equation*} f = 0, \text { all } f \in \mathcal {F} \end{equation*} in $\mathbf {F}_{p}$ is an ${\mathbf {F}_{p}[\overline x]}$-linear combination $\sum _{f \in \mathcal {F}} \ h_f \cdot f$ that equals to $1$ in ${\mathbf {F}_{p}[\overline x]}$. The measure of complexity of such a proof is its degree: $\max _f deg(h_f f)$.
We study the problem to establish degree lower bounds for some extended NS proof systems: these systems prove the unsolvability of $\mathcal {F}$ (in $\mathbf {F}_{p}$) by proving the unsolvability of a bigger set $\mathcal {F}\cup \mathcal {E}$, where the set $\mathcal {E}\subseteq {\mathbf {F}_{p}[\overline x, \overline r]}$ contains all polynomials $r^p - r$ and satisfies the following soundness condition:
We define a notion of pseudo-solutions of $\mathcal {F}$ and prove that the existence of pseudo-solutions with suitable parameters implies lower bounds for two extended NS proof systems ENS and UENS defined by Buss et al [Comput. Complexity 6 (1996/97), pp. 256–298]. Further we give a combinatorial example of $\mathcal {F}$ and candidate pseudo-solutions based on the pigeonhole principle.
References
- M. Ajtai, The complexity of the pigeonhole principle, Combinatorica 14 (1994), no. 4, 417–433. MR 1312870, DOI 10.1007/BF01302964
- Paul Beame, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi, The relative complexity of NP search problems, J. Comput. System Sci. 57 (1998), no. 1, 3–19. 27th Annual ACM Symposium on the Theory of Computing (STOC’95) (Las Vegas, NV). MR 1649804, DOI 10.1006/jcss.1998.1575
- Paul Beame, Russell Impagliazzo, Jan Krajíček, Toniann Pitassi, and Pavel Pudlák, Lower bounds on Hilbert’s Nullstellensatz and propositional proofs, Proc. London Math. Soc. (3) 73 (1996), no. 1, 1–26. MR 1387081, DOI 10.1112/plms/s3-73.1.1
- Samuel R. Buss, Polynomial size proofs of the propositional pigeonhole principle, J. Symbolic Logic 52 (1987), no. 4, 916–927. MR 916397, DOI 10.2307/2273826
- Samuel R. Buss, Lower bounds on Nullstellensatz proofs via designs, Proof complexity and feasible arithmetics (Rutgers, NJ, 1996) DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 39, Amer. Math. Soc., Providence, RI, 1998, pp. 59–71. MR 1486614, DOI 10.1090/dimacs/039/04
- S. Buss, R. Impagliazzo, J. Krajíček, P. Pudlák, A. A. Razborov, and J. Sgall, Proof complexity in algebraic systems and bounded depth Frege systems with modular counting, Comput. Complexity 6 (1996/97), no. 3, 256–298. MR 1486929, DOI 10.1007/BF01294258
- Stephen A. Cook and Robert A. Reckhow, The relative efficiency of propositional proof systems, J. Symbolic Logic 44 (1979), no. 1, 36–50. MR 523487, DOI 10.2307/2273702
- Jan Krajíček, Bounded arithmetic, propositional logic, and complexity theory, Encyclopedia of Mathematics and its Applications, vol. 60, Cambridge University Press, Cambridge, 1995. MR 1366417, DOI 10.1017/CBO9780511529948
- Jan Krajíček, Forcing with random variables and proof complexity, London Mathematical Society Lecture Note Series, vol. 382, Cambridge University Press, Cambridge, 2011. MR 2768875
- Jan Krajíček, A reduction of proof complexity to computational complexity for $AC^0[p]$ Frege systems, Proc. Amer. Math. Soc. 143 (2015), no. 11, 4951–4965. MR 3391052, DOI 10.1090/S0002-9939-2015-12610-X
- Jan Krajíček, Proof complexity, Encyclopedia of Mathematics and its Applications, vol. 170, Cambridge University Press, Cambridge, 2019. MR 3929744, DOI 10.1017/9781108242066
- Jan Krajíček, Pavel Pudlák, and Alan Woods, An exponential lower bound to the size of bounded depth Frege proofs of the pigeonhole principle, Random Structures Algorithms 7 (1995), no. 1, 15–39. MR 1346282, DOI 10.1002/rsa.3240070103
- Toniann Pitassi, Paul Beame, and Russell Impagliazzo, Exponential lower bounds for the pigeonhole principle, Comput. Complexity 3 (1993), no. 2, 97–140. MR 1233662, DOI 10.1007/BF01200117
- Alexander A. Razborov, Lower bounds for the polynomial calculus, Comput. Complexity 7 (1998), no. 4, 291–324. MR 1691494, DOI 10.1007/s000370050013
Bibliographic Information
- Jan Krajíček
- Affiliation: Charles University, Sokolovská 83, Prague, 186 75, The Czech Republic
- ORCID: 0000-0003-0670-3957
- Email: krajicek@karlin.mff.cuni.cz
- Received by editor(s): January 31, 2023
- Received by editor(s) in revised form: July 8, 2023, and September 26, 2023
- Published electronically: September 17, 2024
- Communicated by: Vera Fischer
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 4881-4892
- MSC (2020): Primary 03F20; Secondary 68Q15
- DOI: https://doi.org/10.1090/proc/16709