Generalized Hilbert operators arising from Hausdorff matrices
HTML articles powered by AMS MathViewer
- by C. Bellavita, N. Chalmoukis, V. Daskalogiannis and G. Stylogiannis;
- Proc. Amer. Math. Soc. 152 (2024), 4759-4773
- DOI: https://doi.org/10.1090/proc/16917
- Published electronically: September 10, 2024
- HTML | PDF | Request permission
Abstract:
For a finite, positive Borel measure $\mu$ on $(0,1)$ we consider an infinite matrix $\Gamma _\mu$, related to the classical Hausdorff matrix defined by the same measure $\mu$, in the same algebraic way that the Hilbert matrix is related to the Cesáro matrix. When $\mu$ is the Lebesgue measure, $\Gamma _\mu$ reduces to the classical Hilbert matrix. We prove that the matrices $\Gamma _\mu$ are not Hankel, unless $\mu$ is a constant multiple of the Lebesgue measure, we give necessary and sufficient conditions for their boundedness on the scale of Hardy spaces $H^p, \, 1 \leq p < \infty$, and we study their compactness and complete continuity properties. In the case $2\leq p<\infty$, we are able to compute the exact value of the norm of the operator.References
- N. I. Akhiezer, The classical moment problem and some related questions in analysis, Classics in Applied Mathematics, vol. 82, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, [2021] ©2021. Reprint of the 1965 edition [ 0184042]; Translated by N. Kemmer; With a foreword by H. J. Landau. MR 4191205
- Nikolaos Athanasiou, On the boundedness and norm of certain generalized Hilbert operators in $\ell ^p$, Bull. Lond. Math. Soc. 55 (2023), no. 6, 2598–2610. MR 4689541, DOI 10.1112/blms.12882
- Christos Chatzifountas, Daniel Girela, and José Ángel Peláez, A generalized Hilbert matrix acting on Hardy spaces, J. Math. Anal. Appl. 413 (2014), no. 1, 154–168. MR 3153575, DOI 10.1016/j.jmaa.2013.11.046
- Joseph A. Cima and Alec Matheson, Completely continuous composition operators, Trans. Amer. Math. Soc. 344 (1994), no. 2, 849–856. MR 1257642, DOI 10.1090/S0002-9947-1994-1257642-5
- E. Diamantopoulos and Aristomenis G. Siskakis, Composition operators and the Hilbert matrix, Studia Math. 140 (2000), no. 2, 191–198. MR 1784632, DOI 10.4064/sm-140-2-191-198
- P. L. Duren, Theory of ${H}^p$ spaces, Pure and Applied Mathematics; A Series of Monographs and Textbooks, vol. 38., Academic Press, New York, 1970 (eng).
- R. M. Gabriel, Some Results Concerning the Integrals of Moduli of Regular Functions Along Curves of Certain Types, Proc. London Math. Soc. (2) 28 (1928), no. 2, 121–127. MR 1575848, DOI 10.1112/plms/s2-28.1.121
- P. Galanopoulos and M. Papadimitrakis, Hausdorff and quasi-Hausdorff matrices on spaces of analytic functions, Canad. J. Math. 58 (2006), no. 3, 548–579. MR 2223456, DOI 10.4153/CJM-2006-023-5
- Petros Galanopoulos and José Ángel Peláez, A Hankel matrix acting on Hardy and Bergman spaces, Studia Math. 200 (2010), no. 3, 201–220. MR 2733266, DOI 10.4064/sm200-3-1
- Petros Galanopoulos and Aristomenis G. Siskakis, Hausdorff matrices and composition operators, Illinois J. Math. 45 (2001), no. 3, 757–773. MR 1879233
- Daniel Girela and Noel Merchán, A generalized Hilbert operator acting on conformally invariant spaces, Banach J. Math. Anal. 12 (2018), no. 2, 374–398. MR 3779719, DOI 10.1215/17358787-2017-0023
- G. H. Hardy, An inequality for Hausdorff means, J. London Math. Soc. 18 (1943), 46–50. MR 8854, DOI 10.1112/jlms/s1-18.1.46
- M. Lindström, S. Miihkinen, and D. Norrbo, Exact essential norm of generalized Hilbert matrix operators on classical analytic function spaces. part B, Adv. Math. 408 (2022), no. part B, Paper No. 108598, 34. MR 4460279, DOI 10.1016/j.aim.2022.108598
- Jie Miao, The Cesàro operator is bounded on $H^p$ for $0<p<1$, Proc. Amer. Math. Soc. 116 (1992), no. 4, 1077–1079. MR 1104399, DOI 10.1090/S0002-9939-1992-1104399-8
- Miroslav Pavlović, Function classes on the unit disc—an introduction, De Gruyter Studies in Mathematics, vol. 52, De Gruyter, Berlin, [2019] ©2019. 2nd edition [of 3154590]. MR 4321142, DOI 10.1515/9783110630855
- Aristomenis G. Siskakis, Composition semigroups and the Cesàro operator on $H^p$, J. London Math. Soc. (2) 36 (1987), no. 1, 153–164. MR 897683, DOI 10.1112/jlms/s2-36.1.153
- Maria Tjani, Compact composition operators on Besov spaces, Trans. Amer. Math. Soc. 355 (2003), no. 11, 4683–4698. MR 1990767, DOI 10.1090/S0002-9947-03-03354-3
Bibliographic Information
- C. Bellavita
- Affiliation: Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki 54 124, Greece
- MR Author ID: 1449077
- ORCID: 0000-0003-3136-0271
- Email: carlo.bellavita@gmail.com
- N. Chalmoukis
- Affiliation: Dipartimento di Matematica e Applicazioni, Universitá degli studi di Milano Bicocca, via Roberto Cozzi, 55 20125 Milan, Italy
- MR Author ID: 1316910
- ORCID: 0000-0001-5210-8206
- Email: nikolaos.chalmoukis@unimib.it
- V. Daskalogiannis
- Affiliation: Department of Mathematics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; and Division of Science and Technology, American College of Thessaloniki, Pilea 555 35, Greece
- MR Author ID: 1465224
- ORCID: 0000-0002-9791-2713
- Email: vdaskalo@math.auth.gr
- G. Stylogiannis
- Affiliation: Department of Mathematics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- MR Author ID: 1029303
- ORCID: 0000-0001-9458-1640
- Email: stylog@math.auth.gr
- Received by editor(s): March 16, 2024
- Received by editor(s) in revised form: April 15, 2024
- Published electronically: September 10, 2024
- Additional Notes: This research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the ’2nd Call for H.F.R.I. Research Projects to support Faculty Members & Researchers’ (Project Number: 4662).
- Communicated by: Javad Mashreghi
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 4759-4773
- MSC (2020): Primary 30H10, 47B91
- DOI: https://doi.org/10.1090/proc/16917
- MathSciNet review: 4802628