Time-dependent uniform upper semicontinuity of pullback attractors for non-autonomous delay dynamical systems: Theoretical results and applications
HTML articles powered by AMS MathViewer
- by Qiangheng Zhang, Tomás Caraballo and Shuang Yang;
- Proc. Amer. Math. Soc. 152 (2024), 4809-4820
- DOI: https://doi.org/10.1090/proc/16937
- Published electronically: September 10, 2024
- HTML | PDF | Request permission
Abstract:
In this paper we provide general results on the uniform upper semicontinuity of pullback attractors with respect to the time parameter for non-autonomous delay dynamical systems. Namely, we establish a criteria in terms of the multi-index convergence of solutions for the delay system to the non-delay one, locally pointwise convergence and local controllability of pullback attractors. As an application, we prove the upper semicontinuity of pullback attractors for a non-autonomous delay reaction-diffusion equation to the corresponding nondelay one over any bounded time interval as the delay parameter tends to zero.References
- José M. Arrieta, Alexandre N. Carvalho, José A. Langa, and Aníbal Rodriguez-Bernal, Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations, J. Dynam. Differential Equations 24 (2012), no. 3, 427–481. MR 2964788, DOI 10.1007/s10884-012-9269-y
- T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 10 (2003), no. 4, 491–513. MR 1978585
- T. Caraballo, G. Łukaszewicz, and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal. 64 (2006), no. 3, 484–498. MR 2191992, DOI 10.1016/j.na.2005.03.111
- Alexandre N. Carvalho, José A. Langa, and James C. Robinson, On the continuity of pullback attractors for evolution processes, Nonlinear Anal. 71 (2009), no. 5-6, 1812–1824. MR 2524394, DOI 10.1016/j.na.2009.01.016
- Alexandre N. Carvalho, José A. Langa, and James C. Robinson, Attractors for infinite-dimensional non-autonomous dynamical systems, Applied Mathematical Sciences, vol. 182, Springer, New York, 2013. MR 2976449, DOI 10.1007/978-1-4614-4581-4
- David N. Cheban, Global attractors of non-autonomous dissipative dynamical systems, Interdisciplinary Mathematical Sciences, vol. 1, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2004. MR 2159669, DOI 10.1142/9789812563088
- Vladimir V. Chepyzhov and Mark I. Vishik, Attractors for equations of mathematical physics, American Mathematical Society Colloquium Publications, vol. 49, American Mathematical Society, Providence, RI, 2002. MR 1868930, DOI 10.1051/cocv:2002056
- Hongyong Cui and Peter E. Kloeden, Tail convergences of pullback attractors for asymptotically converging multi-valued dynamical systems, Asymptot. Anal. 112 (2019), no. 3-4, 165–184. MR 3942550, DOI 10.3233/asy-181501
- Jan W. Cholewa and Tomasz Dlotko, Global attractors in abstract parabolic problems, London Mathematical Society Lecture Note Series, vol. 278, Cambridge University Press, Cambridge, 2000. MR 1778284, DOI 10.1017/CBO9780511526404
- A. Eden, C. Foias, B. Nicolaenko, and R. Temam, Exponential attractors for dissipative evolution equations, RAM: Research in Applied Mathematics, vol. 37, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994. MR 1335230
- Mirelson M. Freitas, Piotr Kalita, and José A. Langa, Continuity of non-autonomous attractors for hyperbolic perturbation of parabolic equations, J. Differential Equations 264 (2018), no. 3, 1886–1945. MR 3721416, DOI 10.1016/j.jde.2017.10.007
- Jack K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR 941371, DOI 10.1090/surv/025
- Peter E. Kloeden and Martin Rasmussen, Nonautonomous dynamical systems, Mathematical Surveys and Monographs, vol. 176, American Mathematical Society, Providence, RI, 2011. MR 2808288, DOI 10.1090/surv/176
- Peter E. Kloeden and Jacson Simsen, Attractors of asymptotically autonomous quasi-linear parabolic equation with spatially variable exponents, J. Math. Anal. Appl. 425 (2015), no. 2, 911–918. MR 3303900, DOI 10.1016/j.jmaa.2014.12.069
- Peter E. Kloeden, Jacson Simsen, and Mariza Stefanello Simsen, Asymptotically autonomous multivalued Cauchy problems with spatially variable exponents, J. Math. Anal. Appl. 445 (2017), no. 1, 513–531. MR 3543780, DOI 10.1016/j.jmaa.2016.08.004
- Olga Ladyzhenskaya, Attractors for semigroups and evolution equations, Lezioni Lincee. [Lincei Lectures], Cambridge University Press, Cambridge, 1991. MR 1133627, DOI 10.1017/CBO9780511569418
- José A. Langa, James C. Robinson, Antonio Suárez, and Alejandro Vidal-López, The stability of attractors for non-autonomous perturbations of gradient-like systems, J. Differential Equations 234 (2007), no. 2, 607–625. MR 2300669, DOI 10.1016/j.jde.2006.11.016
- Yangrong Li, Renhai Wang, and Jinyan Yin, Backward compact attractors for non-autonomous Benjamin-Bona-Mahony equations on unbounded channels, Discrete Contin. Dyn. Syst. Ser. B 22 (2017), no. 7, 2569–2586. MR 3651249, DOI 10.3934/dcdsb.2017092
- Yangrong Li, Lianbing She, and Renhai Wang, Asymptotically autonomous dynamics for parabolic equations, J. Math. Anal. Appl. 459 (2018), no. 2, 1106–1123. MR 3732575, DOI 10.1016/j.jmaa.2017.11.033
- Yangrong Li, Shuang Yang, and Qiangheng Zhang, Continuous Wong-Zakai approximations of random attractors for quasi-linear equations with nonlinear noise, Qual. Theory Dyn. Syst. 19 (2020), no. 3, Paper No. 87, 31. MR 4151257, DOI 10.1007/s12346-020-00423-z
- Yangrong Li, Shuang Yang, and Guangqing Long, Continuity of random attractors on a topological space and fractional delayed FitzHugh-Nagumo equations with WZ-noise, Discrete Contin. Dyn. Syst. Ser. B 27 (2022), no. 10, 5977–6008. MR 4470532, DOI 10.3934/dcdsb.2021303
- Yangrong Li, Lianbing She, and Jinyan Yin, Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE, Discrete Contin. Dyn. Syst. Ser. B 23 (2018), no. 4, 1535–1557. MR 3810129, DOI 10.3934/dcdsb.2018058
- James C. Robinson, Infinite-dimensional dynamical systems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001. An introduction to dissipative parabolic PDEs and the theory of global attractors. MR 1881888, DOI 10.1007/978-94-010-0732-0
- Roger Temam, Infinite-dimensional dynamical systems in mechanics and physics, 2nd ed., Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997. MR 1441312, DOI 10.1007/978-1-4612-0645-3
- Shuang Yang, Yangrong Li, and Tomás Caraballo, Dynamical stability of random delayed FitzHugh-Nagumo lattice systems driven by nonlinear Wong-Zakai noise, J. Math. Phys. 63 (2022), no. 11, Paper No. 111512, 32. MR 4505909, DOI 10.1063/5.0125383
- Xiaohu Wang, Kening Lu, and Bixiang Wang, Random attractors for delay parabolic equations with additive noise and deterministic nonautonomous forcing, SIAM J. Appl. Dyn. Syst. 14 (2015), no. 2, 1018–1047. MR 3355764, DOI 10.1137/140991819
- Qiangheng Zhang, Stability of regular pullback attractors for non-autonomous dynamical systems: theoretical results and applications, J. Evol. Equ. 23 (2023), no. 1, Paper No. 18, 26. MR 4547404, DOI 10.1007/s00028-023-00868-0
Bibliographic Information
- Qiangheng Zhang
- Affiliation: School of Mathematics and Statistics, Heze University, Heze 274015, People’s Republic of China
- MR Author ID: 1234507
- Email: zqh_math@126.com
- Tomás Caraballo
- Affiliation: Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, C/Tarfia s/n, 41012-Sevilla, Spain; and Department of Mathematics, Wenzhou University, Wenzhou, Zhejiang Province, 325035, People’s Republic of China
- ORCID: 0000-0003-4697-898X
- Email: caraball@us.es
- Shuang Yang
- Affiliation: School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China; and School of Mathematics and Statistics, Southwest University, Chongqing 400715, People’s Republic of China
- ORCID: 0000-0002-6620-6445
- Email: shuang-yang@outlook.com
- Received by editor(s): January 18, 2024
- Received by editor(s) in revised form: May 4, 2024
- Published electronically: September 10, 2024
- Additional Notes: This work was supported by the Shandong Provincial Natural Science Foundation (Grant No. ZR2022QA054), the Doctoral Foundation of Heze University (Grant No. XY22BS29), the China Postdoctoral Science Foundation (Grant No. 2023M741266), the Spanish Ministerio de Ciencia e Innovación (MCI), Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) under the project PID2021-122991NB-C21.
The data that support the findings of this study are available within the article.
The authors declare that they have no conflict of interest.
The second author is the corresponding author. - Communicated by: Wenxian Shen
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 4809-4820
- MSC (2020): Primary 35B40, 35B41, 37L15, 37L30
- DOI: https://doi.org/10.1090/proc/16937
- MathSciNet review: 4802632