On cohomological dimension of homomorphisms
HTML articles powered by AMS MathViewer
- by Aditya De Saha and Alexander Dranishnikov;
- Proc. Amer. Math. Soc. 152 (2024), 4607-4621
- DOI: https://doi.org/10.1090/proc/16943
- Published electronically: September 10, 2024
- HTML | PDF | Request permission
Abstract:
The (co)homological dimension of a homomorphism $\phi :G\to H$ is the maximal number $k$ such that the induced homomorphism in $k$-th (co)homology groups is nonzero for coefficients in some $H$-module. It is known that for geometrically finite groups $G, cd(G)=hd(G)$ and $cd(G\times G)=2cd(G)$. We prove analogous theorems for homomorphisms of geometrically finite groups.
The analogy stops working on the Eilenberg-Ganea equality $cd(G)=gd(G)$ where $cd(G)>2$ and $gd(G)$ is the geometric dimension of $G$. We show that for every $k>2$ there is a group homomorphism $\phi _k:\pi _k\to \mathbb {Z}^k$ with $cd(\phi _k)<k$ and $gd(\phi _k)=k$ where $\pi _k$ is the fundamental group of a closed aspherical $(k+1)$-dimensional manifold.
References
- Israel Berstein, On the Lusternik-Schnirelmann category of Grassmannians, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 1, 129–134. MR 400212, DOI 10.1017/S0305004100052142
- Robert Bieri, Homological dimension of discrete groups, Queen Mary College Mathematics Notes, Queen Mary College, Mathematics Department, London, 1976. MR 466344
- Glen E. Bredon, Sheaf theory, 2nd ed., Graduate Texts in Mathematics, vol. 170, Springer-Verlag, New York, 1997. MR 1481706, DOI 10.1007/978-1-4612-0647-7
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original. MR 1324339
- Michael W. Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. (2) 117 (1983), no. 2, 293–324. MR 690848, DOI 10.2307/2007079
- A. N. Dranishnikov, On the virtual cohomological dimensions of Coxeter groups, Proc. Amer. Math. Soc. 125 (1997), no. 7, 1885–1891. MR 1422863, DOI 10.1090/S0002-9939-97-04106-3
- Alexander Dranishnikov, On dimension of product of groups, Algebra Discrete Math. 28 (2019), no. 2, 203–212. MR 4072474
- Alexander N. Dranishnikov, The LS category of the product of lens spaces, Algebr. Geom. Topol. 15 (2015), no. 5, 2985–3010. MR 3426700, DOI 10.2140/agt.2015.15.2985
- Alexander Dranishnikov and Nursultan Kuanyshov, On the LS-category of group homomorphisms, Math. Z. 305 (2023), no. 1, Paper No. 14, 12. MR 4633849, DOI 10.1007/s00209-023-03338-y
- Alexander N. Dranishnikov and Yuli B. Rudyak, On the Berstein-Svarc theorem in dimension 2, Math. Proc. Cambridge Philos. Soc. 146 (2009), no. 2, 407–413. MR 2475974, DOI 10.1017/S0305004108001904
- Samuel Eilenberg and Tudor Ganea, On the Lusternik-Schnirelmann category of abstract groups, Ann. of Math. (2) 65 (1957), 517–518. MR 85510, DOI 10.2307/1970062
- Ralph H. Fox, On the Lusternik-Schnirelmann category, Ann. of Math. (2) 42 (1941), 333–370. MR 4108, DOI 10.2307/1968905
- M. Grant, https://mathoverflow.net/questions/89178/cohomological-dimension-of-a-homomorphism.
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- Peter Kropholler, Peter Linnell, and Wolfgang Lück, Groups of small homological dimension and the Atiyah conjecture, Geometric and cohomological methods in group theory, London Math. Soc. Lecture Note Ser., vol. 358, Cambridge Univ. Press, Cambridge, 2009, pp. 272–277. MR 2605183
- D. R. McMillan Jr., Cartesian products of contractible open manifolds, Bull. Amer. Math. Soc. 67 (1961), 510–514. MR 131280, DOI 10.1090/S0002-9904-1961-10662-9
- D. R. McMillan and E. C. Zeeman, On contractible open manifolds, Proc. Cambridge Philos. Soc. 58 (1962), 221–224. MR 139154, DOI 10.1017/s0305004100036434
- A. S. Švarc, The genus of a fibered space, Trudy Moskov. Mat. Obšč. 10 (1961), 217–272 (Russian). MR 154284
- Jamie Scott, On the topological complexity of maps, Topology Appl. 314 (2022), Paper No. 108094, 25. MR 4406987, DOI 10.1016/j.topol.2022.108094
- John Stallings, The piecewise-linear structure of Euclidean space, Proc. Cambridge Philos. Soc. 58 (1962), 481–488. MR 149457, DOI 10.1017/S0305004100036756
Bibliographic Information
- Aditya De Saha
- Affiliation: Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, Florida 32611-8105
- ORCID: 0009-0007-0313-6471
- Email: a.desaha@ufl.edu
- Alexander Dranishnikov
- Affiliation: Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, Florida 32611-8105
- MR Author ID: 212177
- Email: dranish@ufl.edu
- Received by editor(s): February 18, 2023
- Received by editor(s) in revised form: February 27, 2023, February 28, 2023, April 8, 2023, July 12, 2023, and May 16, 2024
- Published electronically: September 10, 2024
- Additional Notes: The second author was supported by Simons Foundation
- Communicated by: Julie Bergner
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 4607-4621
- MSC (2020): Primary 20J05; Secondary 55N25, 20J06
- DOI: https://doi.org/10.1090/proc/16943
- MathSciNet review: 4802617