Extremal Kähler-Ricci solitons on Fano homogeneous toric bundles
HTML articles powered by AMS MathViewer
- by Zhao Lian;
- Proc. Amer. Math. Soc. 152 (2024), 4873-4880
- DOI: https://doi.org/10.1090/proc/16966
- Published electronically: September 24, 2024
- HTML | PDF | Request permission
Abstract:
In this short note, we prove that an extremal Kähler-Ricci soliton on a Fano homogeneous toric bundle is Kähler-Einstein.References
- Andreas Arvanitoyeorgos, An introduction to Lie groups and the geometry of homogeneous spaces, Student Mathematical Library, vol. 22, American Mathematical Society, Providence, RI, 2003. Translated from the 1999 Greek original and revised by the author. MR 2011126, DOI 10.1090/stml/022
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- Eugenio Calabi, Extremal Kähler metrics, Seminar on Differential Geometry, Ann. of Math. Stud., No. 102, Princeton Univ. Press, Princeton, NJ, 1982, pp. 259–290. MR 645743
- Simone Calamai and David Petrecca, On Calabi extremal Kähler-Ricci solitons, Proc. Amer. Math. Soc. 144 (2016), no. 2, 813–821. MR 3430856, DOI 10.1090/proc12725
- Simone Calamai and David Petrecca, Toric extremal Kähler-Ricci solitons are Kähler-Einstein, Complex Manifolds 4 (2017), no. 1, 179–182. MR 3739311, DOI 10.1515/coma-2017-0012
- Bohui Chen, Qing Han, An-Min Li, Zhao Lian, and Li Sheng, Prescribed scalar curvatures for homogeneous toric bundles, Differential Geom. Appl. 63 (2019), 186–211. MR 3903688, DOI 10.1016/j.difgeo.2019.01.002
- S. K. Donaldson, Interior estimates for solutions of Abreu’s equation, Collect. Math. 56 (2005), no. 2, 103–142. MR 2154300
- Simon K. Donaldson, Kähler geometry on toric manifolds, and some other manifolds with large symmetry, Handbook of geometric analysis. No. 1, Adv. Lect. Math. (ALM), vol. 7, Int. Press, Somerville, MA, 2008, pp. 29–75. MR 2483362
- Alexander Kirillov Jr., An introduction to Lie groups and Lie algebras, Cambridge Studies in Advanced Mathematics, vol. 113, Cambridge University Press, Cambridge, 2008. MR 2440737, DOI 10.1017/CBO9780511755156
- An-Min Li, Zhao Lian, and Li Sheng, Extremal metrics on toric manifolds and homogeneous toric bundles, J. Reine Angew. Math. 798 (2023), 237–259. MR 4579705, DOI 10.1515/crelle-2023-0017
- An-Min Li, Li Sheng, and Guosong Zhao, Differential inequalities on homogeneous toric bundles, J. Geom. 108 (2017), no. 2, 775–790. MR 3667253, DOI 10.1007/s00022-017-0372-4
- Toshiki Mabuchi, Test configurations, stabilities and canonical Kähler metrics—complex geometry by the energy method, SpringerBriefs in Mathematics, Springer, Singapore, [2021] ©2021. MR 4248091, DOI 10.1007/978-981-16-0500-0
- Yasufumi Nitta, On relations between Mabuchi’s generalized Kähler-Einstein metrics and various canonical Kähler metrics, Proc. Amer. Math. Soc. 151 (2023), no. 7, 3083–3087. MR 4579380, DOI 10.1090/proc/16385
- T. Nyberg, Constant Scalar Curvature of Toric Fibrations, Ph.D. Thesis, Columbia University.
- Fabio Podestà and Andrea Spiro, Kähler-Ricci solitons on homogeneous toric bundles, J. Reine Angew. Math. 642 (2010), 109–127. MR 2658183, DOI 10.1515/CRELLE.2010.038
- A. Raza, Scalar Curvature and Multiplicity-Free Actions, Ph.D. Thesis, Imperial College London, 2005.
Bibliographic Information
- Zhao Lian
- Affiliation: School of Mathematics, Southwest Jiaotong University, Chengdu 611756, People’s Republic of China
- MR Author ID: 1077921
- ORCID: 0009-0003-9799-2914
- Email: zhaolian@swjtu.edu.cn
- Received by editor(s): March 22, 2024
- Received by editor(s) in revised form: May 23, 2024
- Published electronically: September 24, 2024
- Additional Notes: The author was supported by the China Scholarship Council (No. 202008515008) and the support of NSFC Grant NSFC11901480, NSFC12071322, NSFC12071059.
- Communicated by: Jiaping Wang
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 4873-4880
- MSC (2020): Primary 53C25, 53C55
- DOI: https://doi.org/10.1090/proc/16966
- MathSciNet review: 4802638