On the $p$-negative type gap of finite metric spaces and its relation to the Gramian matrix
HTML articles powered by AMS MathViewer
- by Gavin Robertson;
- Proc. Amer. Math. Soc. 152 (2024), 4841-4854
- DOI: https://doi.org/10.1090/proc/16983
- Published electronically: September 24, 2024
- HTML | PDF | Request permission
Abstract:
The $p$-negative type gap of a finite metric space is a useful tool in studying isometric embedding properties of the space. Wolf gave a versatile formula for computing the $p$-negative type gap, which relies on properties of the inverse of the matrix $D_{p}=(d_{X}(x_{i},x_{j})^{p})_{i,j=0}^{n}$. In this article we provide a simplification of Wolf’s formula in terms of the Gramian matrix $G_{p}=((1/2)(d_{X}(x_{i},x_{0})^{p}+d_{X}(x_{j},x_{0})^{p}-d_{X}(x_{i},x_{j})^{p}))_{i,j=1}^{n}$. We also study slight variations of the $p$-negative type gap and show that that some of these are much easier to compute than the original $p$-negative type gap. Finally, we provide explicit expressions for the $p$-negative type gap and some of these variations for the bipartite graph $K_{n,1}$.References
- Ian Doust and Anthony Weston, Enhanced negative type for finite metric trees, J. Funct. Anal. 254 (2008), no. 9, 2336–2364. MR 2409164, DOI 10.1016/j.jfa.2008.01.013
- Ian Doust and Anthony Weston, Corrigendum to: “Enhanced negative type for finite metric trees” [J. Funct. Anal. 254 (2008), no. 9, 2336–2364; MR2409164], J. Funct. Anal. 255 (2008), no. 2, 532–533. MR 2419970, DOI 10.1016/j.jfa.2008.03.018
- Ian Doust, Stephen Sánchez, and Anthony Weston, Asymptotic negative type properties of finite ultrametric spaces, J. Math. Anal. Appl. 446 (2017), no. 2, 1776–1793. MR 3563059, DOI 10.1016/j.jmaa.2016.09.069
- Per Enflo, On a problem of Smirnov, Ark. Mat. 8 (1969), 107–109. MR 415576, DOI 10.1007/BF02589550
- Timothy Faver, Katelynn Kochalski, Mathav Kishore Murugan, Heidi Verheggen, Elizabeth Wesson, and Anthony Weston, Roundness properties of ultrametric spaces, Glasg. Math. J. 56 (2014), no. 3, 519–535. MR 3250263, DOI 10.1017/S0017089513000438
- C. J. Lennard, A. M. Tonge, and A. Weston, Generalized roundness and negative type, Michigan Math. J. 44 (1997), no. 1, 37–45. MR 1439667, DOI 10.1307/mmj/1029005619
- Hanfeng Li and Anthony Weston, Strict $p$-negative type of a metric space, Positivity 14 (2010), no. 3, 529–545. MR 2680513, DOI 10.1007/s11117-009-0035-2
- Gavin Robertson, The maximal generalised roundness of finite metric spaces, Proc. Amer. Math. Soc. 149 (2021), no. 1, 407–411. MR 4172615, DOI 10.1090/proc/15298
- Stephen Sánchez, On the supremal $p$-negative type of finite metric spaces, J. Math. Anal. Appl. 389 (2012), no. 1, 98–107. MR 2876484, DOI 10.1016/j.jmaa.2011.11.043
- I. J. Schoenberg, Remarks to Maurice Fréchet’s article “Sur la définition axiomatique d’une classe d’espace distanciés vectoriellement applicable sur l’espace de Hilbert” [MR1503246], Ann. of Math. (2) 36 (1935), no. 3, 724–732. MR 1503248, DOI 10.2307/1968654
- I. J. Schoenberg, Metric spaces and positive definite functions, Trans. Amer. Math. Soc. 44 (1938), no. 3, 522–536. MR 1501980, DOI 10.1090/S0002-9947-1938-1501980-0
- Reinhard Wolf, On the gap of finite metric spaces of $p$-negative type, Linear Algebra Appl. 436 (2012), no. 5, 1246–1257. MR 2890917, DOI 10.1016/j.laa.2011.08.031
- Reinhard Wolf, Estimating the gap of finite metric spaces of strict $p$-negative type, Linear Algebra Appl. 556 (2018), 171–199. MR 3842579, DOI 10.1016/j.laa.2018.07.005
Bibliographic Information
- Gavin Robertson
- Affiliation: School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales 2052, Australia
- MR Author ID: 1407771
- ORCID: 0000-0003-4231-4879
- Email: gavin.robertson@unsw.edu.au
- Received by editor(s): February 12, 2024
- Received by editor(s) in revised form: June 11, 2024, and June 12, 2024
- Published electronically: September 24, 2024
- Communicated by: Stephen Dilworth
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 4841-4854
- MSC (2020): Primary 46C15
- DOI: https://doi.org/10.1090/proc/16983
- MathSciNet review: 4802635