On random polynomials with an intermediate number of real roots
HTML articles powered by AMS MathViewer
- by Marcus Michelen and Sean O’Rourke;
- Proc. Amer. Math. Soc. 152 (2024), 4933-4942
- DOI: https://doi.org/10.1090/proc/16999
- Published electronically: September 17, 2024
- PDF | Request permission
Abstract:
For each $\alpha \in (0, 1)$, we construct a bounded monotone deterministic sequence $(c_k)_{k \geqslant 0}$ of real numbers so that the number of real roots of the random polynomial $f_n(z) = \sum _{k=0}^n c_k \varepsilon _k z^k$ is $n^{\alpha + o(1)}$ with probability tending to one as the degree $n$ tends to infinity, where $(\varepsilon _k)$ is a sequence of i.i.d. (real) random variables of finite mean satisfying a mild anti-concentration assumption. In particular, this includes the case when $(\varepsilon _k)$ is a sequence of i.i.d. standard Gaussian or Rademacher random variables. This result confirms a conjecture of O. Nguyen from 2019. More generally, our main results also describe several statistical properties for the number of real roots of $f_n$, including the asymptotic behavior of the variance and a central limit theorem.References
- A. T. Bharucha-Reid and M. Sambandham, Random polynomials, Probability and Mathematical Statistics, Academic Press, Inc., Orlando, FL, 1986. MR 856019
- A. Bloch and G. Pólya, On the Roots of Certain Algebraic Equations, Proc. London Math. Soc. (2) 33 (1931), no. 2, 102–114. MR 1576817, DOI 10.1112/plms/s2-33.1.102
- Yen Do, Oanh Nguyen, and Van Vu, Roots of random polynomials with coefficients of polynomial growth, Ann. Probab. 46 (2018), no. 5, 2407–2494. MR 3846831, DOI 10.1214/17-AOP1219
- Alan Edelman and Eric Kostlan, How many zeros of a random polynomial are real?, Bull. Amer. Math. Soc. (N.S.) 32 (1995), no. 1, 1–37. MR 1290398, DOI 10.1090/S0273-0979-1995-00571-9
- Paul Erdös and A. C. Offord, On the number of real roots of a random algebraic equation, Proc. London Math. Soc. (3) 6 (1956), 139–160. MR 73870, DOI 10.1112/plms/s3-6.1.139
- P. J. Forrester and G. Honner, Exact statistical properties of the zeros of complex random polynomials, J. Phys. A 32 (1999), no. 16, 2961–2981. MR 1690355, DOI 10.1088/0305-4470/32/16/006
- F. Götze, D. Kaliada, and D. Zaporozhets, Correlation functions of real zeros of random polynomials, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 454 (2016), no. Veroyatnost′i Statistika. 24, 102–111; English transl., J. Math. Sci. (N.Y.) 229 (2018), no. 6, 664–670. MR 3602403, DOI 10.1007/s10958-018-3705-4
- J. M. Hammersley, The zeros of a random polynomial, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. II, Univ. California Press, Berkeley-Los Angeles, Calif., 1956, pp. 89–111. MR 84888
- J. Ben Hough, Manjunath Krishnapur, Yuval Peres, and Bálint Virág, Zeros of Gaussian analytic functions and determinantal point processes, University Lecture Series, vol. 51, American Mathematical Society, Providence, RI, 2009. MR 2552864, DOI 10.1090/ulect/051
- I. A. Ibragimov and N. B. Maslova, The average number of real roots of random polynomials, Dokl. Akad. Nauk SSSR 199 (1971), 13–16 (Russian). MR 292134
- I. A. Ibragimov and N. B. Maslova, The mean number of real zeros of random polynomials. I. Coefficients with zero mean, Teor. Verojatnost. i Primenen. 16 (1971), 229–248 (Russian, with English summary). MR 286157
- I. A. Ibragimov and N. B. Maslova, The mean number of real zeros of random polynomials. I. Coefficients with zero mean, Teor. Verojatnost. i Primenen. 16 (1971), 229–248 (Russian, with English summary). MR 286157
- Zakhar Kabluchko and Dmitry Zaporozhets, Asymptotic distribution of complex zeros of random analytic functions, Ann. Probab. 42 (2014), no. 4, 1374–1395. MR 3262481, DOI 10.1214/13-AOP847
- M. Kac, On the average number of real roots of a random algebraic equation, Bull. Amer. Math. Soc. 49 (1943), 314–320. MR 7812, DOI 10.1090/S0002-9904-1943-07912-8
- M. Kac, On the Average Number of Real Roots of a Random Algebraic Equation (II), Proc. London Math. Soc. (2) 50 (1949), no. 6, 390–408. MR 1575245, DOI 10.1112/plms/s2-50.6.401
- J. E. Littlewood and A. C. Offord, On the Number of Real Roots of a Random Algebraic Equation, J. London Math. Soc. 13 (1938), no. 4, 288–295. MR 1574980, DOI 10.1112/jlms/s1-13.4.288
- B. F. Logan and L. A. Shepp, Real zeros of random polynomials, Proc. London Math. Soc. (3) 18 (1968), 29–35. MR 234512, DOI 10.1112/plms/s3-18.1.29
- B. F. Logan and L. A. Shepp, Real zeros of random polynomials. II, Proc. London Math. Soc. (3) 18 (1968), 308–314. MR 234513, DOI 10.1112/plms/s3-18.2.308
- Hoi Nguyen, Oanh Nguyen, and Van Vu, On the number of real roots of random polynomials, Commun. Contemp. Math. 18 (2016), no. 4, 1550052, 17. MR 3493213, DOI 10.1142/S0219199715500522
- Oanh Nguyen and Van Vu, Roots of random functions: a framework for local universality, Amer. J. Math. 144 (2022), no. 1, 1–74. MR 4367414, DOI 10.1353/ajm.2022.0000
- Igor E. Pritsker, Zero distribution of random polynomials, J. Anal. Math. 134 (2018), no. 2, 719–745. MR 3771497, DOI 10.1007/s11854-018-0023-1
- Igor E. Pritsker and Aaron M. Yeager, Zeros of polynomials with random coefficients, J. Approx. Theory 189 (2015), 88–100. MR 3280673, DOI 10.1016/j.jat.2014.09.003
- Grégory Schehr and Satya N. Majumdar, Condensation of the roots of real random polynomials on the real axis, J. Stat. Phys. 135 (2009), no. 4, 587–598. MR 2544105, DOI 10.1007/s10955-009-9755-8
- Larry A. Shepp and Robert J. Vanderbei, The complex zeros of random polynomials, Trans. Amer. Math. Soc. 347 (1995), no. 11, 4365–4384. MR 1308023, DOI 10.1090/S0002-9947-1995-1308023-8
- Mikhail Sodin, Zeroes of Gaussian analytic functions, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2005, pp. 445–458. MR 2185759
- Terence Tao and Van Vu, Local universality of zeroes of random polynomials, Int. Math. Res. Not. IMRN 13 (2015), 5053–5139. MR 3439098, DOI 10.1093/imrn/rnu084
- D. I. Šparo and M. G. Šur, On the distribution of roots of random polynomials, Vestnik Moskov. Univ. Ser. I Mat. Meh. 1962 (1962), no. 3, 40–43 (Russian, with English summary). MR 139199
Bibliographic Information
- Marcus Michelen
- Affiliation: Department of Mathematics, Statistics and Computer Science, University of Illinois, Chicago, 851 S. Morgan St., Chicago, Illinois 60607
- MR Author ID: 1312016
- Email: michelen@uic.edu
- Sean O’Rourke
- Affiliation: Department of Mathematics, University of Colorado Boulder, Campus Box 395, Boulder, Colorado 80309-0395
- MR Author ID: 897261
- ORCID: 0000-0002-3805-1298
- Email: sean.d.orourke@colorado.edu
- Received by editor(s): December 1, 2023
- Received by editor(s) in revised form: April 4, 2024, and May 28, 2024
- Published electronically: September 17, 2024
- Additional Notes: The first author was supported in part by NSF CAREER grant DMS-2336788 as well as grants DMS-2137623 and DMS-2246624.
The second author was supported in part by NSF CAREER grant DMS-2143142. - Communicated by: Zhen-Qing Chen
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 4933-4942
- MSC (2020): Primary 60F05, 26C10
- DOI: https://doi.org/10.1090/proc/16999