Improved global well-posedness for the quartic Korteweg-de Vries equation
HTML articles powered by AMS MathViewer
- by Simão Correia;
- Proc. Amer. Math. Soc. 152 (2024), 5117-5136
- DOI: https://doi.org/10.1090/proc/16911
- Published electronically: September 26, 2024
- HTML | PDF | Request permission
Abstract:
We prove that the quartic Korteweg-de Vries equation is globally well-posed for real-valued initial data in $H^s(\mathbb {R})$, $s>-1/24$.References
- Jean Bourgain, A remark on normal forms and the “$I$-method” for periodic NLS, J. Anal. Math. 94 (2004), 125–157. MR 2124457, DOI 10.1007/BF02789044
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Global well-posedness for KdV in Sobolev spaces of negative index, Electron. J. Differential Equations (2001), No. 26, 7. MR 1824796
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal. 33 (2001), no. 3, 649–669. MR 1871414, DOI 10.1137/S0036141001384387
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, A refined global well-posedness result for Schrödinger equations with derivative, SIAM J. Math. Anal. 34 (2002), no. 1, 64–86. MR 1950826, DOI 10.1137/S0036141001394541
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Sharp global well-posedness for KdV and modified KdV on $\Bbb R$ and $\Bbb T$, J. Amer. Math. Soc. 16 (2003), no. 3, 705–749. MR 1969209, DOI 10.1090/S0894-0347-03-00421-1
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Resonant decompositions and the $I$-method for the cubic nonlinear Schrödinger equation on $\Bbb R^2$, Discrete Contin. Dyn. Syst. 21 (2008), no. 3, 665–686. MR 2399431, DOI 10.3934/dcds.2008.21.665
- Adán J. Corcho and Mahendra Panthee, Global well-posedness for a coupled modified KdV system, Bull. Braz. Math. Soc. (N.S.) 43 (2012), no. 1, 27–57. MR 2909922, DOI 10.1007/s00574-012-0004-4
- Simão Correia, Filipe Oliveira, and Jorge Drumond Silva, Sharp local well-posedness and nonlinear smoothing for dispersive equations through frequency-restricted estimates, SIAM J. Math. Anal. 56 (2024), no. 4, 5604–5633. MR 4782510, DOI 10.1137/23M156923X
- Luiz Gustavo Farah, Global rough solutions to the critical generalized KdV equation, J. Differential Equations 249 (2010), no. 8, 1968–1985. MR 2679011, DOI 10.1016/j.jde.2010.05.010
- Axel Grünrock, A bilinear Airy-estimate with application to gKdV-3, Differential Integral Equations 18 (2005), no. 12, 1333–1339. MR 2174975
- Axel Grünrock, Mahendra Panthee, and Jorge Drumond Silva, A remark on global well-posedness below $L^2$ for the GKDV-3 equation, Differential Integral Equations 20 (2007), no. 11, 1229–1236. MR 2372424
- Zihua Guo, Soonsik Kwon, and Tadahiro Oh, Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS, Comm. Math. Phys. 322 (2013), no. 1, 19–48. MR 3073156, DOI 10.1007/s00220-013-1755-5
- Nobu Kishimoto, Resonant decomposition and the $I$-method for the two-dimensional Zakharov system, Discrete Contin. Dyn. Syst. 33 (2013), no. 9, 4095–4122. MR 3038054, DOI 10.3934/dcds.2013.33.4095
- Soonsik Kwon, Tadahiro Oh, and Haewon Yoon, Normal form approach to unconditional well-posedness of nonlinear dispersive PDEs on the real line, Ann. Fac. Sci. Toulouse Math. (6) 29 (2020), no. 3, 649–720 (English, with English and French summaries). MR 4196700, DOI 10.5802/afst.1643
- Terence Tao, Scattering for the quartic generalised Korteweg-de Vries equation, J. Differential Equations 232 (2007), no. 2, 623–651. MR 2286393, DOI 10.1016/j.jde.2006.07.019
- Nikolaos Tzirakis, The Cauchy problem for the semilinear quintic Schrödinger equation in one dimension, Differential Integral Equations 18 (2005), no. 8, 947–960. MR 2150447
Bibliographic Information
- Simão Correia
- Affiliation: Center for Mathematical Analysis, Geometry and Dynamical Systems, Department of Mathematics, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- ORCID: 0000-0002-7787-1352
- Received by editor(s): October 23, 2023
- Received by editor(s) in revised form: April 24, 2024
- Published electronically: September 26, 2024
- Additional Notes: The author was partially supported by Fundação para a Ciência e Tecnologia, through CAMGSD, IST-ID (projects UIDB/04459/2020 and UIDP/04459/2020) and through the project NoDES (PTDC/MAT-PUR/1788/2020)
- Communicated by: Benoit Pausader
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 5117-5136
- MSC (2020): Primary 35A01, 35B45, 35Q53
- DOI: https://doi.org/10.1090/proc/16911