On the analyticity of the maximal extension of a number field with prescribed ramification and splitting
HTML articles powered by AMS MathViewer
- by Donghyeok Lim and Christian Maire;
- Proc. Amer. Math. Soc. 152 (2024), 5013-5024
- DOI: https://doi.org/10.1090/proc/16922
- Published electronically: September 26, 2024
- HTML | PDF | Request permission
Abstract:
We determine all the $p$-adic analytic groups that are realizable as Galois groups of the maximal pro-$p$ extensions of number fields with prescribed ramification and splitting under an assumption which allows us to move away from the Tame Fontaine-Mazur conjecture.References
- Y. Benmerieme and A. Movahhedi, Multi-quadratic $p$-rational number fields, J. Pure Appl. Algebra 225 (2021), no. 9, Paper No. 106657, 17. MR 4192837, DOI 10.1016/j.jpaa.2020.106657
- J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-$p$ groups, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 1999. MR 1720368, DOI 10.1017/CBO9780511470882
- Jean-Marc Fontaine and Barry Mazur, Geometric Galois representations, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993) Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 41–78. MR 1363495
- Georges Gras, Les $\theta$-régulateurs locaux d’un nombre algébrique: conjectures $p$-adiques, Canad. J. Math. 68 (2016), no. 3, 571–624 (French, with English and French summaries). MR 3492629, DOI 10.4153/CJM-2015-026-3
- G. Gras, Class field theory, from theory to practice, corr. 2nd ed., Springer Monographs in Mathematics, Springer, 2005, xiii+507 pages.
- Farshid Hajir and Christian Maire, Prime decomposition and the Iwasawa MU-invariant, Math. Proc. Cambridge Philos. Soc. 166 (2019), no. 3, 599–617. MR 3933912, DOI 10.1017/S0305004118000191
- Wolfgang N. Herfort and Luis Ribes, On automorphisms of free pro-$p$-groups. I, Proc. Amer. Math. Soc. 108 (1990), no. 2, 287–295. MR 984794, DOI 10.1090/S0002-9939-1990-0984794-6
- Helmut Koch, Galois theory of $p$-extensions, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. With a foreword by I. R. Shafarevich; Translated from the 1970 German original by Franz Lemmermeyer; With a postscript by the author and Lemmermeyer. MR 1930372, DOI 10.1007/978-3-662-04967-9
- Julien Koperecz, Triquadratic $p$-rational fields, J. Number Theory 242 (2023), 402–408. MR 4490454, DOI 10.1016/j.jnt.2022.04.011
- Jon González-Sánchez and Benjamin Klopsch, Analytic pro-$p$ groups of small dimensions, J. Group Theory 12 (2009), no. 5, 711–734. MR 2554763, DOI 10.1515/JGT.2009.006
- Christian Maire, Sur la dimension cohomologique des pro-$p$-extensions des corps de nombres, J. Théor. Nombres Bordeaux 17 (2005), no. 2, 575–606 (French, with English and French summaries). MR 2211309, DOI 10.5802/jtnb.509
- A. Movahhedi, Sur les $p$-extensions des corps $p$-rationnels, PhD Université Paris VII, 1988.
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008. MR 2392026, DOI 10.1007/978-3-540-37889-1
- The PARI Group, PARI/GP-2.15.3, Univ. Bordeaux, 2023, http://pari.math.u-bordeaux.fr/.
- Alexander Schmidt, Bounded defect in partial Euler characteristics, Bull. London Math. Soc. 28 (1996), no. 5, 463–464. MR 1396144, DOI 10.1112/blms/28.5.463
- Kay Wingberg, Galois groups of local and global type, J. Reine Angew. Math. 517 (1999), 223–239. MR 1728539, DOI 10.1515/crll.1999.096
Bibliographic Information
- Donghyeok Lim
- Affiliation: Institute of Mathematical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
- MR Author ID: 1467815
- ORCID: 0000-0001-8786-2786
- Email: donghyeokklim@gmail.com
- Christian Maire
- Affiliation: FEMTO-ST Institute, Université Franche-Comté, CNRS, 15B avenue des Montboucons, 25000 Besançon, France
- MR Author ID: 609225
- ORCID: 0000-0003-0303-3396
- Email: christian.maire@univ-fcomte.fr
- Received by editor(s): August 19, 2023
- Received by editor(s) in revised form: April 10, 2024, and May 1, 2024
- Published electronically: September 26, 2024
- Additional Notes: The first author was supported by the Core Research Institute Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 2019R1A6A1A11051177) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. NRF-2022R1I1A1A01071431). The second author was also partially supported by the EIPHI Graduate School (contract ANR-17-EURE-0002).
- Communicated by: Rachel Pries
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 5013-5024
- MSC (2020): Primary 11R37, 11R32
- DOI: https://doi.org/10.1090/proc/16922