On multivariate $L^p$ Bernstein-Markov type inequalities
HTML articles powered by AMS MathViewer
- by András Kroó;
- Proc. Amer. Math. Soc. 152 (2024), 5149-5162
- DOI: https://doi.org/10.1090/proc/16925
- Published electronically: October 2, 2024
- HTML | PDF | Request permission
Abstract:
It was established in a recent paper by Kroó [J. Approx. Theory 281/282 (2022), p. 5] that the following sharp $L^2$ Bernstein-Markov type inequality on the unit ball $B^d$ holds for any polynomial $p$ of degree at most $n$ in $d$ variables, \begin{equation*} \|(1-|x|^2)^{\frac {\mu +1}{2}}D p\|_{L_2(B^d)}\leq M_n(d)\|(1-|x|^2)^{\frac {\mu }{2}}p\|_{L_2(B^d)}, \;\;\mu >-1, \end{equation*} with $M_n(d)=\sqrt {n(n+d+2\mu )}$ or $\sqrt {n(n+d+2\mu )-d+1}$ when $n$ is even or odd, respectively, where $Dp$ denotes the $l^2$ norm of the gradient of $p$. And all of the estimates listed above were sharp with equalities being attained for certain polynomials. In this paper the uniqueness of the corresponding extremal polynomials is verified.
For homogeneous polynomials $h_n\in H^d_n$ of degree $n$ in $d$ variables we will prove sharp $L_2$ Markov type inequalities \begin{equation*} \xi _n\|h_n\|_{L_2(S^{d-1})}\leq \|D h_n\|_{L_2(S^{d-1})}\leq \sqrt {n(2n+d-2)}\|h_n\|_{L_2(S^{d-1})} \end{equation*} with $\xi _n=n$ if $n$ is even and $\xi _n=\sqrt {n^2+d-1}$ if $n$ is odd. The upper bound is attained if and only if $h_n$ is a spherical harmonic while the lower bound is attained if and only if $h_n(x)=c|x|^n$, or $h_n(x)=|x|^{n-1}q(x), q\in H^d_1$ when $n$ is even or odd, respectively.
In addition, we will study possible extensions of these results to the $L^p$ case. In particular it will be established that the $L^p$ Markov factor for homogeneous polynomials of degree $n$ on $C^2$ star like domains with non degenerate outer normals is of asymptotically optimal order $n$.
References
- V. V. Arestov, Integral inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 1, 3–22, 239 (Russian). MR 607574
- J. E. Avery and J. S. Avery, Hyperspherical Harmonics and Their Physical Applications, World Scientific Publishing Company, 2018.
- Feng Dai, András Kroó, and Andriy Prymak, On Bernstein- and Marcinkiewicz-type inequalities on multivariate $C^{\alpha }$-domains, J. Approx. Theory 305 (2025), Paper No. 106101, 27. MR 4798878, DOI 10.1016/j.jat.2024.106101
- Feng Dai and Yuan Xu, Approximation theory and harmonic analysis on spheres and balls, Springer Monographs in Mathematics, Springer, New York, 2013. MR 3060033, DOI 10.1007/978-1-4614-6660-4
- Charles F. Dunkl and Yuan Xu, Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, vol. 81, Cambridge University Press, Cambridge, 2001. MR 1827871, DOI 10.1017/CBO9780511565717
- Lawrence A. Harris, A Bernstein-Markov theorem for normed spaces, J. Math. Anal. Appl. 208 (1997), no. 2, 476–486. MR 1441449, DOI 10.1006/jmaa.1997.5339
- Einar Hille, G. Szegö, and J. D. Tamarkin, On some generalizations of a theorem of A. Markoff, Duke Math. J. 3 (1937), no. 4, 729–739. MR 1546027, DOI 10.1215/S0012-7094-37-00361-2
- András Kroó, Markov-type inequalities for homogeneous polynomials on smooth convex bodies, East J. Approx. 9 (2003), no. 4, 487–500. MR 2028656
- András Kroó, On the exact constant in the $L_2$ Markov inequality, J. Approx. Theory 151 (2008), no. 2, 208–211. MR 2407867, DOI 10.1016/j.jat.2007.09.006
- András Kroó, Exact $L_2$ Bernstein-Markov inequality on the ball, J. Approx. Theory 281/282 (2022), Paper No. 105795, 5. MR 4453127, DOI 10.1016/j.jat.2022.105795
- András Kroó, $L_p$ Bernstein type inequalities for star like Lip $\alpha$ domains, J. Math. Anal. Appl. 532 (2024), no. 2, Paper No. 127986, 16. MR 4670510, DOI 10.1016/j.jmaa.2023.127986
- Geno Nikolov and Alexei Shadrin, Markov-type inequalities and extreme zeros of orthogonal polynomials, J. Approx. Theory 271 (2021), Paper No. 105644, 17. MR 4307309, DOI 10.1016/j.jat.2021.105644
- Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, London Mathematical Society Monographs. New Series, vol. 26, The Clarendon Press, Oxford University Press, Oxford, 2002. MR 1954841, DOI 10.1093/oso/9780198534938.001.0001
- M. A. Shubin, Pseudodifferential operators and spectral theory, 2nd ed., Springer-Verlag, Berlin, 2001. Translated from the 1978 Russian original by Stig I. Andersson. MR 1852334, DOI 10.1007/978-3-642-56579-3
- E. Schmidt, Die asymptotische bestimmung des Maximus des Integrals, Sitzungsber. Preussischen Akad. Wiss., 287 (1932).
- Gabor Szegö, Orthogonal Polynomials, American Mathematical Society Colloquium Publications, Vol. 23, American Mathematical Society, New York, 1939. MR 77, DOI 10.1090/coll/023
- P. Turán, Remark on a theorem of Erhard Schmidt, Mathematica (Cluj) 2(25) (1960), 373–378. MR 132963
- Y. Ge and Y. Xu, Sharp Bernstein inequalities on simplex, Constr. Approx. (to appear), Preprint, arXiv:abs/2307.01839, 2023.
Bibliographic Information
- András Kroó
- Affiliation: Alfréd Rényi Institute of Mathematics, Budapest, Hungary
- Email: kroo@renyi.hu
- Received by editor(s): December 28, 2023
- Received by editor(s) in revised form: April 25, 2024
- Published electronically: October 2, 2024
- Communicated by: Yuan Xu
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 5149-5162
- MSC (2020): Primary 41A17
- DOI: https://doi.org/10.1090/proc/16925