Rigidity for inscribed radius estimate of asymptotically hyperbolic Einstein manifold
HTML articles powered by AMS MathViewer
- by Xiaoshang Jin;
- Proc. Amer. Math. Soc. 152 (2024), 5327-5337
- DOI: https://doi.org/10.1090/proc/16955
- Published electronically: October 8, 2024
- HTML | PDF | Request permission
Abstract:
The inscribed radius of a compact manifold with boundary is bounded above if its Ricci curvature and mean curvature are bounded from below. The rigidity result implies that the upper bound can be achieved only in space form. In this paper, we generalize this result to asymptotically hyperbolic (AH) Einstein manifold. We get an upper bound of the relative volume of AH manifold and if we combine it with the recent work of Wang and Zhou, then the rigidity is obtained.References
- Michael T. Anderson, Boundary regularity, uniqueness and non-uniqueness for AH Einstein metrics on 4-manifolds, Adv. Math. 179 (2003), no. 2, 205–249. MR 2010802, DOI 10.1016/S0001-8708(02)00075-0
- Carlo Mantegazza and Andrea Carlo Mennucci, Hamilton-Jacobi equations and distance functions on Riemannian manifolds, Appl. Math. Optim. 47 (2003), no. 1, 1–25. MR 1941909, DOI 10.1007/s00245-002-0736-4
- Jeffrey S. Case and Sun-Yung Alice Chang, On fractional GJMS operators, Comm. Pure Appl. Math. 69 (2016), no. 6, 1017–1061. MR 3493624, DOI 10.1002/cpa.21564
- Xuezhang Chen, Mijia Lai, and Fang Wang, Escobar-Yamabe compactifications for Poincaré-Einstein manifolds and rigidity theorems, Adv. Math. 343 (2019), 16–35. MR 3880687, DOI 10.1016/j.aim.2018.11.005
- Shiu Yuen Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z. 143 (1975), no. 3, 289–297. MR 378001, DOI 10.1007/BF01214381
- Piotr T. Chruściel, Erwann Delay, John M. Lee, and Dale N. Skinner, Boundary regularity of conformally compact Einstein metrics, J. Differential Geom. 69 (2005), no. 1, 111–136. MR 2169584
- Satyaki Dutta and Mohammad Javaheri, Rigidity of conformally compact manifolds with the round sphere as the conformal infinity, Adv. Math. 224 (2010), no. 2, 525–538. MR 2609014, DOI 10.1016/j.aim.2009.12.004
- José F. Escobar, Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary, Ann. of Math. (2) 136 (1992), no. 1, 1–50. MR 1173925, DOI 10.2307/2946545
- Charles Fefferman and C. Robin Graham, Conformal invariants, Astérisque Numéro Hors Série (1985), 95–116. The mathematical heritage of Élie Cartan (Lyon, 1984). MR 837196
- María del Mar González and Jie Qing, Fractional conformal Laplacians and fractional Yamabe problems, Anal. PDE 6 (2013), no. 7, 1535–1576. MR 3148060, DOI 10.2140/apde.2013.6.1535
- C. Robin Graham and John M. Lee, Einstein metrics with prescribed conformal infinity on the ball, Adv. Math. 87 (1991), no. 2, 186–225. MR 1112625, DOI 10.1016/0001-8708(91)90071-E
- C. Robin Graham and Maciej Zworski, Scattering matrix in conformal geometry, Séminaire: Équations aux Dérivées Partielles, 2000–2001, Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau, 2001, pp. Exp. No. XXIII, 14. MR 1860694
- Ernst Heintze and Hermann Karcher, A general comparison theorem with applications to volume estimates for submanifolds, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 451–470. MR 533065, DOI 10.24033/asens.1354
- Xiaoshang Jin, Boundary regularity for asymptotically hyperbolic metrics with smooth Weyl curvature, Pacific J. Math. 301 (2019), no. 2, 467–487. MR 4023355, DOI 10.2140/pjm.2019.301.467
- Xiaoshang Jin, The relative area function and the capacity of sphere on asymptotically hyperbolic manifolds. Preprint, arXiv:2207.02012, 2022.
- Mark S. Joshi and Antônio Sá Barreto, Inverse scattering on asymptotically hyperbolic manifolds, Acta Math. 184 (2000), no. 1, 41–86. MR 1756569, DOI 10.1007/BF02392781
- Atsushi Kasue, Ricci curvature, geodesics and some geometric properties of Riemannian manifolds with boundary, J. Math. Soc. Japan 35 (1983), no. 1, 117–131. MR 679079, DOI 10.2969/jmsj/03510117
- John M. Lee, The spectrum of an asymptotically hyperbolic Einstein manifold, Comm. Anal. Geom. 3 (1995), no. 1-2, 253–271. MR 1362652, DOI 10.4310/CAG.1995.v3.n2.a2
- Gang Li, Jie Qing, and Yuguang Shi, Gap phenomena and curvature estimates for conformally compact Einstein manifolds, Trans. Amer. Math. Soc. 369 (2017), no. 6, 4385–4413. MR 3624414, DOI 10.1090/tran/6925
- Haizhong Li and Yong Wei, Rigidity theorems for diameter estimates of compact manifold with boundary, Int. Math. Res. Not. IMRN 11 (2015), 3651–3668. MR 3373063, DOI 10.1093/imrn/rnu052
- Rafe R. Mazzeo and Richard B. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75 (1987), no. 2, 260–310. MR 916753, DOI 10.1016/0022-1236(87)90097-8
- Richard M. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, Topics in calculus of variations (Montecatini Terme, 1987) Lecture Notes in Math., vol. 1365, Springer, Berlin, 1989, pp. 120–154. MR 994021, DOI 10.1007/BFb0089180
- Fang Wang and Huihuang Zhou, Comparison theorems for GJMS operators, Sci. China Math. 64 (2021), no. 11, 2479–2494. MR 4330485, DOI 10.1007/s11425-020-1689-1
- Fang Wang and Huihuang Zhou, Lower bounds for the relative volume of Poincare-Einstein manifolds, Preprint, arXiv:2112.06669, 2021.
- Xiaodong Wang and Zhixin Wang, On a sharp inequality relating Yamabe invariants on a Poincare-Einstein manifold, Proc. Amer. Math. Soc. 150 (2022), no. 11, 4923–4929. MR 4489323, DOI 10.1090/proc/15976
Bibliographic Information
- Xiaoshang Jin
- Affiliation: School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
- MR Author ID: 1221673
- ORCID: 0000-0001-6083-9826
- Email: jinxs@hust.edu.cn
- Received by editor(s): June 3, 2023
- Received by editor(s) in revised form: May 10, 2024
- Published electronically: October 8, 2024
- Additional Notes: The author was supported by the NSFC (Grant No. 12201225)
- Communicated by: Jiaping Wang
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 5327-5337
- MSC (2020): Primary 53C18, 53C24
- DOI: https://doi.org/10.1090/proc/16955