The classification of Boolean degree $1$ functions in high-dimensional finite vector spaces
HTML articles powered by AMS MathViewer
- by Ferdinand Ihringer;
- Proc. Amer. Math. Soc. 152 (2024), 5355-5365
- DOI: https://doi.org/10.1090/proc/16957
- Published electronically: October 9, 2024
- HTML | PDF | Request permission
Abstract:
We classify the Boolean degree $1$ functions of $k$-spaces in a vector space of dimension $n$ (also known as Cameron-Liebler classes) over the field with $q$ elements for $n \geq n_0(k, q)$. This also implies that two-intersecting sets with respect to $k$-spaces do not exist for $n \geq n_0(k, q)$. Our main ingredient is the Ramsey theory for geometric lattices.References
- A. Blokhuis, M. De Boeck, and J. Dโhaeseleer, Cameron-Liebler sets of $k$-spaces in $\textrm {PG}(n,q)$, Des. Codes Cryptogr. 87 (2019), no.ย 8, 1839โ1856. MR 3974804, DOI 10.1007/s10623-018-0583-1
- A. A. Bruen and Keldon Drudge, The construction of Cameron-Liebler line classes in $\textrm {PG}(3,q)$, Finite Fields Appl. 5 (1999), no.ย 1, 35โ45. MR 1667101, DOI 10.1006/ffta.1998.0239
- P. J. Cameron and R. A. Liebler, Tactical decompositions and orbits of projective groups, Linear Algebra Appl. 46 (1982), 91โ102. MR 664699, DOI 10.1016/0024-3795(82)90029-5
- Neta Dafni, Yuval Filmus, Noam Lifshitz, Nathan Lindzey, and Marc Vinyals, Complexity measures on the symmetric group and beyond, 12th Innovations in Theoretical Computer Science Conference, LIPIcs. Leibniz Int. Proc. Inform., vol. 185, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2021, pp.ย Art. No. 87, 5. MR 4214331, DOI 10.1305/ndjfl/1040046140
- Jan De Beule, Jeroen Demeyer, Klaus Metsch, and Morgan Rodgers, A new family of tight sets in $\mathcal Q^+(5,q)$, Des. Codes Cryptogr. 78 (2016), no.ย 3, 655โ678. MR 3459217, DOI 10.1007/s10623-014-0023-9
- Jan De Beule, Jonathan Mannaert, and Leo Storme, Cameron-Liebler $k$-sets in subspaces and non-existence conditions, Des. Codes Cryptogr. 90 (2022), no.ย 3, 633โ651. MR 4390573, DOI 10.1007/s10623-021-00995-0
- J. De Beule, J. Mannaert, and L. Storme, On two non-existence results for Cameron-Liebler $k$-sets in $PG(n, q)$, arXiv:2403.00519 [math.CO], 2024.
- Keldon Wayne Drudge, Extremal sets in projective and polar spaces, ProQuest LLC, Ann Arbor, MI, 1998. Thesis (Ph.D.)โThe University of Western Ontario (Canada). MR 2698237
- David Ellis, Ehud Friedgut, and Haran Pilpel, Intersecting families of permutations, J. Amer. Math. Soc. 24 (2011), no.ย 3, 649โ682. MR 2784326, DOI 10.1090/S0894-0347-2011-00690-5
- Tao Feng, Koji Momihara, Morgan Rodgers, Qing Xiang, and Hanlin Zou, Cameron-Liebler line classes with parameter $x=\frac {(q+1)^2}3$, Adv. Math. 385 (2021), Paper No. 107780, 31. MR 4256140, DOI 10.1016/j.aim.2021.107780
- Tao Feng, Koji Momihara, and Qing Xiang, Cameron-Liebler line classes with parameter $x=\frac {q^2-1}{2}$, J. Combin. Theory Ser. A 133 (2015), 307โ338. MR 3325637, DOI 10.1016/j.jcta.2015.02.004
- Yuval Filmus, Friedgut-Kalai-Naor theorem for slices of the Boolean cube, Chic. J. Theoret. Comput. Sci. , posted on (2016), Art. 14, 17. MR 3578425, DOI 10.4086/cjtcs.2016.014
- Yuval Filmus, Junta threshold for low degree Boolean functions on the slice, Electron. J. Combin. 30 (2023), no.ย 1, Paper No. 1.55, 20. MR 4564831, DOI 10.37236/11115
- Yuval Filmus and Ferdinand Ihringer, Boolean degree 1 functions on some classical association schemes, J. Combin. Theory Ser. A 162 (2019), 241โ270. MR 3874601, DOI 10.1016/j.jcta.2018.11.006
- Yuval Filmus and Ferdinand Ihringer, Boolean constant degree functions on the slice are juntas, Discrete Math. 342 (2019), no.ย 12, 111614, 7. MR 3990024, DOI 10.1016/j.disc.2019.111614
- B. Frederickson and L. Yepremyan, Vector space Ramsey numbers and weakly Sidorenko affine configurations, arXiv:2308.13489v1 [math.CO], 2023.
- Ehud Friedgut, Gil Kalai, and Assaf Naor, Boolean functions whose Fourier transform is concentrated on the first two levels, Adv. in Appl. Math. 29 (2002), no.ย 3, 427โ437. MR 1942632, DOI 10.1016/S0196-8858(02)00024-6
- Alexander L. Gavrilyuk and Ivan Yu. Mogilnykh, Cameron-Liebler line classes in $PG(n,4)$, Des. Codes Cryptogr. 73 (2014), no.ย 3, 969โ982. MR 3248525, DOI 10.1007/s10623-013-9838-z
- Alexander L. Gavrilyuk and Ilia Matkin, Cameron-Liebler line classes in $\rm PG(3,5)$, J. Combin. Des. 26 (2018), no.ย 12, 563โ580. MR 3875128, DOI 10.1002/jcd.21625
- Patrick Govaerts and Tim Penttila, Cameron-Liebler line classes in $\textrm {PG}(3,4)$, Bull. Belg. Math. Soc. Simon Stevin 12 (2005), no.ย 5, 793โ804. MR 2241344
- R. L. Graham, K. Leeb, and B. L. Rothschild, Ramseyโs theorem for a class of categories, Advances in Math. 8 (1972), 417โ433. MR 306010, DOI 10.1016/0001-8708(72)90005-9
- I. A. Matkin, Cameron-Liebler line classes of $\textrm {PG}(n,5)$, Tr. Inst. Mat. Mekh. 24 (2018), no.ย 2, 158โ172 (Russian, with English and Russian summaries). MR 3853330, DOI 10.21538/0134-4889-2018-24-2-158-172
- Francesco Mazzocca and Giuseppe Tallini, On the nonexistence of blocking-sets in $\textrm {PG}(n,q)$ and $\textrm {AG}(n,q),$ for all large enough $n$, Simon Stevin 59 (1985), no.ย 1, 43โ50. MR 795270
- Klaus Metsch, The non-existence of Cameron-Liebler line classes with parameter $2<x\leqslant q$, Bull. Lond. Math. Soc. 42 (2010), no.ย 6, 991โ996. MR 2740019, DOI 10.1112/blms/bdq057
- Aaron D. Meyerowitz, Cycle-balanced partitions in distance-regular graphs, J. Combin. Inform. System Sci. 17 (1992), no.ย 1-2, 39โ42. MR 1216964
- Hans Jรผrgen Prรถmel and Bernd Voigt, Recent results in partition (Ramsey) theory for finite lattices, Discrete Math. 35 (1981), 185โ198. MR 620671, DOI 10.1016/0012-365X(81)90207-7
- Maria Tallini Scafati, Calotte di tipo $(m,\,n)$ in uno spazio di Galois $S_{r,q}$, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 53 (1972), 71โ81 (1973) (Italian, with English summary). MR 349436
- Maria Tallini Scafati, Sui $k$-insiemi di uno szazio di Galois $S_{r,q}$ a due soli caratteri nella dimensione $d$, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 60 (1976), no.ย 6, 782โ788 (Italian, with English summary). MR 461274
- B. Voigt, Ramsey-Saetze fรผr endliche Geometrien und endliche abelsche Gruppen, PhD thesis, Universitรคt Bielefeld, 1978.
Bibliographic Information
- Ferdinand Ihringer
- Affiliation: Department of Mathematics, Southern University of Science and Technology, Shenzhen, Peopleโs Republic of China
- MR Author ID: 1039789
- ORCID: 0000-0001-5939-5623
- Email: Ferdinand.Ihringer@gmail.com
- Received by editor(s): December 2, 2023
- Received by editor(s) in revised form: May 7, 2024, and May 25, 2024
- Published electronically: October 9, 2024
- Communicated by: Isabella Novik
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 5355-5365
- MSC (2020): Primary 51E20, 05E30, 06E30
- DOI: https://doi.org/10.1090/proc/16957