On lax limits in $\infty$-categories
HTML articles powered by AMS MathViewer
- by John D. Berman;
- Proc. Amer. Math. Soc. 152 (2024), 5055-5066
- DOI: https://doi.org/10.1090/proc/16968
- Published electronically: October 9, 2024
- HTML | PDF | Request permission
Abstract:
We introduce partially lax limits of $\infty$-categories, which interpolate between ordinary limits and lax limits. Most naturally occurring examples of lax limits are only partially lax; we give examples arising from enriched $\infty$-categories and $\infty$-operads. Our main result is a formula for partially lax limits and colimits in terms of the Grothendieck construction. This generalizes a formula of Lurie for ordinary limits and of Gepner, Haugseng, and Nikolaus for fully lax limits.References
- F. Abellán García, Marked cofinality for $\infty$-functors, Preprint, arXiv:2006.12416, 2020.
- Clark Barwick, On the algebraic $K$-theory of higher categories, J. Topol. 9 (2016), no. 1, 245–347. MR 3465850, DOI 10.1112/jtopol/jtv042
- Clark Barwick, Spectral Mackey functors and equivariant algebraic $K$-theory (I), Adv. Math. 304 (2017), 646–727. MR 3558219, DOI 10.1016/j.aim.2016.08.043
- Clark Barwick and Jay Shah, Fibrations in $\infty$-category theory, 2016 MATRIX annals, MATRIX Book Ser., vol. 1, Springer, Cham, 2018, pp. 17–42. MR 3792514
- J. Berman, Enriched $\infty$-categories I: enriched presheaves, arXiv:2008.11323, 2020.
- M. E. Descotte, E. J. Dubuc, and M. Szyld, Sigma limits in 2-categories and flat pseudofunctors, Adv. Math. 333 (2018), 266–313. MR 3818078, DOI 10.1016/j.aim.2018.05.021
- I. Di Liberti and A. Osmond, Biaccessible and bipresentable 2-categories, Preprint, arXiv:2203.07046, 2022.
- A. Gagna, Y. Harpaz, and E. Lanari, Fibrations and lax limits of $(\infty ,2)$-categories, Preprint, arXiv:2012.04537, 2020.
- Andrea Gagna, Yonatan Harpaz, and Edoardo Lanari, Bilimits are bifinal objects, J. Pure Appl. Algebra 226 (2022), no. 12, Paper No. 107137, 36. MR 4432326, DOI 10.1016/j.jpaa.2022.107137
- David Gepner and Rune Haugseng, Enriched $\infty$-categories via non-symmetric $\infty$-operads, Adv. Math. 279 (2015), 575–716. MR 3345192, DOI 10.1016/j.aim.2015.02.007
- David Gepner, Rune Haugseng, and Thomas Nikolaus, Lax colimits and free fibrations in $\infty$-categories, Doc. Math. 22 (2017), 1225–1266. MR 3690268, DOI 10.4171/dm/593
- Saul Glasman, A spectrum-level Hodge filtration on topological Hochschild homology, Selecta Math. (N.S.) 22 (2016), no. 3, 1583–1612. MR 3518559, DOI 10.1007/s00029-016-0228-z
- Rune Haugseng, On (co)ends in $\infty$-categories, J. Pure Appl. Algebra 226 (2022), no. 2, Paper No. 106819, 16. MR 4279286, DOI 10.1016/j.jpaa.2021.106819
- Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659, DOI 10.1515/9781400830558
- J. Lurie, Higher algebra, Preprint, http://www.math.harvard.edu/$\sim $lurie/papers/HA.pdf (accessed 8/15/2023).
- Martina Rovelli, Weighted limits in an $(\infty , 1)$-category, Appl. Categ. Structures 29 (2021), no. 6, 1019–1062. MR 4324373, DOI 10.1007/s10485-021-09643-z
- Ross Street, Limits indexed by category-valued $2$-functors, J. Pure Appl. Algebra 8 (1976), no. 2, 149–181. MR 401868, DOI 10.1016/0022-4049(76)90013-X
Bibliographic Information
- John D. Berman
- MR Author ID: 1284960
- Received by editor(s): January 18, 2021
- Received by editor(s) in revised form: August 15, 2023, November 8, 2023, and May 31, 2024
- Published electronically: October 9, 2024
- Additional Notes: This work was supported by a National Science Foundation Postdoctoral Fellowship under grant 1803089.
- Communicated by: Julie Bergner
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 5055-5066
- MSC (2020): Primary 18N60
- DOI: https://doi.org/10.1090/proc/16968