A universal Kaluzhnin–Krasner embedding theorem
HTML articles powered by AMS MathViewer
- by Bo Shan Deval, Xabier García-Martínez and Tim Van der Linden;
- Proc. Amer. Math. Soc. 152 (2024), 5039-5053
- DOI: https://doi.org/10.1090/proc/16976
- Published electronically: October 10, 2024
- HTML | PDF | Request permission
Abstract:
Given two groups $A$ and $B$, the Kaluzhnin–Krasner universal embedding theorem states that the wreath product $A\wr B$ acts as a universal receptacle for extensions from $A$ to $B$. For a split extension, this embedding is compatible with the canonical splitting of the wreath product, which is further universal in a precise sense. This result was recently extended to Lie algebras and to cocommutative Hopf algebras.
The aim of the present article is to explore the feasibility of adapting the theorem to other types of algebraic structures. By explaining the underlying unity of the three known cases, our analysis gives necessary and sufficient conditions for this to happen.
From those we may for instance conclude that a version for crossed modules can indeed be attained, while the theorem cannot be adapted to, say, associative algebras, Jordan algebras or Leibniz algebras, when working over an infinite field: we prove that then, amongst non-associative algebras, only Lie algebras admit a universal Kaluzhnin–Krasner embedding theorem.
References
- Michael Barr, Exact categories, Exact categories and categories of sheaves, Lecture Notes in Math., vol. 236, Springer, Berlin, 1971, pp. 1–120. MR 3727442, DOI 10.1007/BFb0058579
- Michael Barr, Coalgebras over a commutative ring, J. Algebra 32 (1974), no. 3, 600–610. MR 401881, DOI 10.1016/0021-8693(74)90161-6
- L. Bartholdi, O. Siegenthaler, and T. Trimble, Wreath products of cocommutative Hopf algebras, arXiv:1407.3835, 2014.
- Jonathan Mock Beck, Triples, algebras and cohomology, Repr. Theory Appl. Categ. 2 (2003), 1–59. MR 1987896
- Francis Borceux and Dominique Bourn, Mal’cev, protomodular, homological and semi-abelian categories, Mathematics and its Applications, vol. 566, Kluwer Academic Publishers, Dordrecht, 2004. MR 2044291, DOI 10.1007/978-1-4020-1962-3
- Dominique Bourn, Normalization equivalence, kernel equivalence and affine categories, Category theory (Como, 1990) Lecture Notes in Math., vol. 1488, Springer, Berlin, 1991, pp. 43–62. MR 1173004, DOI 10.1007/BFb0084212
- Dominique Bourn and James R. A. Gray, Aspects of algebraic exponentiation, Bull. Belg. Math. Soc. Simon Stevin 19 (2012), no. 5, 823–846. MR 3009018
- D. Bourn and G. Janelidze, Protomodularity, descent, and semidirect products, Theory Appl. Categ. 4 (1998), No. 2, 37–46. MR 1615341
- Dominique Bourn and George Janelidze, Characterization of protomodular varieties of universal algebras, Theory Appl. Categ. 11 (2003), No. 6, 143–147. MR 1988074
- D. Bourn and G. Janelidze, Extensions with abelian kernels in protomodular categories, Georgian Math. J. 11 (2004), no. 4, 645–654. MR 2110362, DOI 10.1515/GMJ.2004.645
- Alan S. Cigoli, James R. A. Gray, and Tim Van der Linden, Algebraically coherent categories, Theory Appl. Categ. 30 (2015), Paper No. 54, 1864–1905. MR 3438233
- Peter J. Freyd, Abelian categories [MR0166240], Repr. Theory Appl. Categ. 3 (2003), 1–190. MR 2050440
- Xabier García-Martínez and James R. A. Gray, Algebraic exponentiation for Lie algebras, Theory Appl. Categ. 36 (2021), Paper No. 11, 288–305. MR 4414983
- Xabier García-Martínez and Tim Van der Linden, A note on split extensions of bialgebras, Forum Math. 30 (2018), no. 5, 1089–1095. MR 3849634, DOI 10.1515/forum-2017-0016
- Xabier García-Martínez and Tim Van der Linden, A characterisation of Lie algebras amongst anti-commutative algebras, J. Pure Appl. Algebra 223 (2019), no. 11, 4857–4870. MR 3955044, DOI 10.1016/j.jpaa.2019.02.018
- Xabier García-Martínez and Tim Van der Linden, A characterisation of Lie algebras via algebraic exponentiation, Adv. Math. 341 (2019), 92–117. MR 3872845, DOI 10.1016/j.aim.2018.10.034
- Marino Gran, Gabriel Kadjo, and Joost Vercruysse, Split extension classifiers in the category of cocommutative Hopf algebras, Bull. Belg. Math. Soc. Simon Stevin 25 (2018), no. 3, 355–382. MR 3852673, DOI 10.36045/bbms/1536631232
- J. R. A. Gray, Algebraic exponentiation in general categories, Ph.D. thesis, University of Cape Town, 2010.
- James Richard Andrew Gray, Algebraic exponentiation for categories of Lie algebras, J. Pure Appl. Algebra 216 (2012), no. 8-9, 1964–1967. MR 2925888, DOI 10.1016/j.jpaa.2012.02.034
- James Richard Andrew Gray, Algebraic exponentiation in general categories, Appl. Categ. Structures 20 (2012), no. 6, 543–567. MR 2990906, DOI 10.1007/s10485-011-9251-6
- P. J. Higgins, Groups with multiple operators, Proc. London Math. Soc. (3) 6 (1956), 366–416. MR 82492, DOI 10.1112/plms/s3-6.3.366
- George Janelidze, László Márki, and Walter Tholen, Semi-abelian categories, J. Pure Appl. Algebra 168 (2002), no. 2-3, 367–386. Category theory 1999 (Coimbra). MR 1887164, DOI 10.1016/S0022-4049(01)00103-7
- Marc Krasner and Léo Kaloujnine, Produit complet des groupes de permutations et problème de groupes. II, Acta Sci. Math. (Szeged) 14 (1951), 39–66 (French). MR 49891
- Nelson Martins-Ferreira and Tim Van der Linden, A note on the “Smith is Huq” condition, Appl. Categ. Structures 20 (2012), no. 2, 175–187. MR 2899723, DOI 10.1007/s10485-010-9231-2
- V. M. Petrogradsky, Yu. P. Razmyslov, and E. O. Shishkin, Wreath products and Kaluzhnin-Krasner embedding for Lie algebras, Proc. Amer. Math. Soc. 135 (2007), no. 3, 625–636. MR 2262857, DOI 10.1090/S0002-9939-06-08502-9
- Diana Rodelo, Moore categories, Theory Appl. Categ. 12 (2004), No. 6, 237–247. MR 2056097
Bibliographic Information
- Bo Shan Deval
- Affiliation: Institut de Recherche en Mathématique et Physique, Université catholique de Louvain, chemin du cyclotron 2 bte L7.01.02, B–1348 Louvain-la-Neuve, Belgium
- Email: bo.deval@uclouvain.be
- Xabier García-Martínez
- Affiliation: CITMAga & Universidade de Vigo, Departamento de Matemáticas, Esc. Sup. de Enx. Informática, Campus de Ourense, E–32004 Ourense, Spain
- ORCID: 0000-0003-1679-4047
- Email: xabier.garcia.martinez@uvigo.gal
- Tim Van der Linden
- Affiliation: Institut de Recherche en Mathématique et Physique, Université catholique de Louvain, chemin du cyclotron 2 bte L7.01.02, B–1348 Louvain-la-Neuve, Belgium; and Mathematics & Data Science, Vrije Universiteit Brussel, Pleinlaan 2, B–1050 Brussel, Belgium
- MR Author ID: 722179
- ORCID: 0000-0001-5474-5356
- Email: tim.vanderlinden@uclouvain.be
- Received by editor(s): June 27, 2023
- Received by editor(s) in revised form: December 5, 2023, and May 30, 2024
- Published electronically: October 10, 2024
- Additional Notes: The first author’s research was supported by a grant of the Fund for Research Training in Industry and Agriculture (FRIA)
The second author was supported by Ministerio de Ciencia, Innovación y Universidades (Spain), with grant number PID2021-127075NA-I00.
The third author is a Senior Research Associate of the Fonds de la Recherche Scientifique–FNRS - Communicated by: Sarah Witherspoon
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 5039-5053
- MSC (2020): Primary 16B50, 16W25, 17A36, 18C05, 18E13, 20E22
- DOI: https://doi.org/10.1090/proc/16976