Borel conjecture for the Marczewski ideal
HTML articles powered by AMS MathViewer
- by Jörg Brendle and Wolfgang Wohofsky;
- Proc. Amer. Math. Soc. 152 (2024), 5395-5410
- DOI: https://doi.org/10.1090/proc/16981
- Published electronically: October 2, 2024
- HTML | PDF | Request permission
Abstract:
We show in ZFC that there is no set of reals of size continuum which can be translated away from every set in the Marczewski ideal. We also show that in the Cohen model, every set with this property is countable.References
- Tomek Bartoszyński and Haim Judah, Set theory, A K Peters, Ltd., Wellesley, MA, 1995. On the structure of the real line. MR 1350295, DOI 10.1201/9781439863466
- Jörg Brendle, Yurii Khomskii, and Wolfgang Wohofsky, Cofinalities of Marczewski-like ideals, Colloq. Math. 150 (2017), no. 2, 269–279. MR 3719461, DOI 10.4064/cm7113-5-2017
- Andreas Blass, A partition theorem for perfect sets, Proc. Amer. Math. Soc. 82 (1981), no. 2, 271–277. MR 609665, DOI 10.1090/S0002-9939-1981-0609665-0
- E. Borel, Sur la classification des ensembles de mesure nulle, Bull. Soc. Math. France 47 (1919), 97–125 (French). MR 1504785, DOI 10.24033/bsmf.996
- Tomek Bartoszynski and Saharon Shelah, Strongly meager sets do not form an ideal, J. Math. Log. 1 (2001), no. 1, 1–34. MR 1838340, DOI 10.1142/S0219061301000028
- Timothy J. Carlson, Strong measure zero and strongly meager sets, Proc. Amer. Math. Soc. 118 (1993), no. 2, 577–586. MR 1139474, DOI 10.1090/S0002-9939-1993-1139474-6
- Martin Goldstern, Jakob Kellner, Saharon Shelah, and Wolfgang Wohofsky, Borel conjecture and dual Borel conjecture, Trans. Amer. Math. Soc. 366 (2014), no. 1, 245–307. MR 3118397, DOI 10.1090/S0002-9947-2013-05783-2
- Fred Galvin, Jan Mycielski, and Robert M. Solovay, Strong measure zero sets, Notices Amer. Math. Soc. 26 (1979), no. 3, A–280.
- Haim Judah, Arnold W. Miller, and Saharon Shelah, Sacks forcing, Laver forcing, and Martin’s axiom, Arch. Math. Logic 31 (1992), no. 3, 145–161. MR 1147737, DOI 10.1007/BF01269943
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Richard Laver, On the consistency of Borel’s conjecture, Acta Math. 137 (1976), no. 3-4, 151–169. MR 422027, DOI 10.1007/BF02392416
- Arnold W. Miller, Special subsets of the real line, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 201–233. MR 776624
- Wacław Sierpiński, Sur un ensemble non dénombrable, dont toute image continue est de mesure nulle, Fund. Math. 11 (1928), 302–304.
- Boban Velic̆ković, CCC posets of perfect trees, Compositio Math. 79 (1991), no. 3, 279–294. MR 1121140
- Wolfgang Wohofsky, Special sets of real numbers and variants of the Borel Conjecture, Ph.D. Thesis, Technische Universität Wien, 2013.
- Wolfgang Wohofsky, Borel conjecture, dual Borel conjecture, and other variants of the Borel conjecture, Centenary of the Borel conjecture, Contemp. Math., vol. 755, Amer. Math. Soc., [Providence], RI, [2020] ©2020, pp. 135–227. MR 4146585, DOI 10.1090/conm/755/15216
Bibliographic Information
- Jörg Brendle
- Affiliation: Graduate School of System Informatics, Kobe University, Rokko-dai 1-1, Nada-ku, Kobe 657-8501, Japan
- Email: brendle@kobe-u.ac.jp
- Wolfgang Wohofsky
- Affiliation: Hamburg University, Bundesstrasse 55 (Geomatikum), 20146 Hamburg, Germany
- MR Author ID: 1043905
- ORCID: 0000-0002-2980-0373
- Email: wolfgang.wohofsky@gmx.at
- Received by editor(s): August 5, 2017
- Received by editor(s) in revised form: December 17, 2023
- Published electronically: October 2, 2024
- Communicated by: Heike Mildenberger
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 5395-5410
- MSC (2020): Primary 03E05; Secondary 03E15, 03E17, 03E35, 03E50, 22A05, 54H11
- DOI: https://doi.org/10.1090/proc/16981