Symplectic capacities of disc cotangent bundles of flat tori
HTML articles powered by AMS MathViewer
- by Gabriele Benedetti, Johanna Bimmermann and Kai Zehmisch;
- Proc. Amer. Math. Soc. 152 (2024), 5367-5372
- DOI: https://doi.org/10.1090/proc/17018
- Published electronically: October 10, 2024
- HTML | PDF | Request permission
Abstract:
We show that on the unit disc cotangent bundle of flat Riemannian tori, all normalized capacities coincide with twice the systole. The same result holds for flat, reversible Finsler tori and normalized capacities that are greater than or equal to the Hofer–Zehnder capacity.References
- Shiri Artstein-Avidan, Roman Karasev, and Yaron Ostrover, From symplectic measurements to the Mahler conjecture, Duke Math. J. 163 (2014), no. 11, 2003–2022. MR 3263026, DOI 10.1215/00127094-2794999
- Johanna Bimmermann, Hofer-Zehnder capacity of disc tangent bundles of projective spaces, J. Lond. Math. Soc. (2) 110 (2024), no. 1, Paper No. e12948, 29. MR 4765340, DOI 10.1112/jlms.12948
- J. Bimmerman, On symplectic geometry of tangent bundles of hermitian symmetric spaces, Preprint, arXiv:2406.16440, 2024.
- Johanna Bimmermann, Hofer-Zehnder capacity of magnetic disc tangent bundles over constant curvature surfaces, Arch. Math. (Basel) 123 (2024), no. 1, 103–111. MR 4761801, DOI 10.1007/s00013-024-02003-y
- F. Broćić, Riemannian distance and symplectic embeddings in cotangent bundle, Preprint, arXiv:2303.12752, 2023.
- Kai Cieliebak, Helmut Hofer, Janko Latschev, and Felix Schlenk, Quantitative symplectic geometry, Dynamics, ergodic theory, and geometry, Math. Sci. Res. Inst. Publ., vol. 54, Cambridge Univ. Press, Cambridge, 2007, pp. 1–44. MR 2369441, DOI 10.1017/CBO9780511755187.002
- I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics, Math. Z. 200 (1989), no. 3, 355–378. MR 978597, DOI 10.1007/BF01215653
- Brayan Ferreira and Vinicius G. B. Ramos, Symplectic embeddings into disk cotangent bundles, J. Fixed Point Theory Appl. 24 (2022), no. 3, Paper No. 62, 31. MR 4482142, DOI 10.1007/s11784-022-00979-0
- B. Ferreira, V. G. Ramos, and A. Vicente, Gromov width of the disk cotangent bundle of spheres of revolution, Preprint, arXiv:2301.08528, 2023.
- M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307–347. MR 809718, DOI 10.1007/BF01388806
- Helmut Hofer and Eduard Zehnder, Symplectic invariants and Hamiltonian dynamics, Modern Birkhäuser Classics, Birkhäuser Verlag, Basel, 2011. Reprint of the 1994 edition. MR 2797558, DOI 10.1007/978-3-0348-0104-1
- Mei Yue Jiang, Hofer-Zehnder symplectic capacity for two-dimensional manifolds, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), no. 5, 945–950. MR 1249696, DOI 10.1017/S0308210500029590
- Leonardo Macarini and Felix Schlenk, A refinement of the Hofer-Zehnder theorem on the existence of closed characteristics near a hypersurface, Bull. London Math. Soc. 37 (2005), no. 2, 297–300. MR 2119029, DOI 10.1112/S0024609304003923
- Dusa McDuff and Dietmar Salamon, Introduction to symplectic topology, 3rd ed., Oxford Graduate Texts in Mathematics, Oxford University Press, Oxford, 2017. MR 3674984, DOI 10.1093/oso/9780198794899.001.0001
- Vinicius Gripp Barros Ramos, Symplectic embeddings and the Lagrangian bidisk, Duke Math. J. 166 (2017), no. 9, 1703–1738. MR 3662442, DOI 10.1215/00127094-0000011X
- Felix Schlenk, Symplectic embedding problems, old and new, Bull. Amer. Math. Soc. (N.S.) 55 (2018), no. 2, 139–182. MR 3777016, DOI 10.1090/bull/1587
- Michael Usher, Many closed symplectic manifolds have infinite Hofer-Zehnder capacity, Trans. Amer. Math. Soc. 364 (2012), no. 11, 5913–5943. MR 2946937, DOI 10.1090/S0002-9947-2012-05623-6
Bibliographic Information
- Gabriele Benedetti
- Affiliation: Department of Mathematics, Vrije Universiteit Amsterdam, De Boelelaan 1111, 1081 HV Amsterdam, The Netherlands
- MR Author ID: 1125621
- ORCID: 0000-0001-5379-042X
- Email: g.benedetti@vu.nl
- Johanna Bimmermann
- Affiliation: Fakultät für Mathematik, Ruhr-Universität Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
- ORCID: 0009-0006-0120-8366
- Email: Johanna.Bimmermann@rub.de
- Kai Zehmisch
- Affiliation: Fakultät für Mathematik, Ruhr-Universität Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
- MR Author ID: 818509
- ORCID: 0000-0002-9512-860X
- Email: Kai.Zehmisch@rub.de
- Received by editor(s): November 20, 2023
- Received by editor(s) in revised form: June 3, 2024
- Published electronically: October 10, 2024
- Additional Notes: The first author was partially supported by the DFG under Germany’s Excellence Strategy EXC2181/1 - 390900948 (the Heidelberg STRUCTURES Excellence Cluster) and by the Simons Center. The second and third authors were partially supported by the DFG under the Collaborative Research Center SFB/TRR 191 - 281071066 (Symplectic Structures in Geometry, Algebra and Dynamics).
- Communicated by: Jiaping Wang
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 5367-5372
- MSC (2020): Primary 53D05
- DOI: https://doi.org/10.1090/proc/17018