A geometric classification of rod complements in the $3$-torus
HTML articles powered by AMS MathViewer
- by Connie On Yu Hui;
- Proc. Amer. Math. Soc. 153 (2025), 381-394
- DOI: https://doi.org/10.1090/proc/16949
- Published electronically: October 29, 2024
- HTML | PDF | Request permission
Abstract:
Rod packings are used in crystallography to describe crystal structures with linear or zigzag chains of particles, and each rod packing can be topologically viewed as a collection of disjoint geodesics in the $3$-torus. Hui and Purcell developed a method to study the complements of rods in the $3$-torus with the use of $3$-dimensional geometry and tools from the $3$-sphere, and they partially classified the geometry of some families of rod complements in the $3$-torus. In this paper, we provide a complete classification of the geometry of all rod complements in the $3$-torus using topological arguments.References
- C. Adams, C. Albors-Riera, B. Haddock, Z. Li, D. Nishida, B. Reinoso, and L. Wang, Hyperbolicity of links in thickened surfaces, Topology Appl. 256 (2019), 262–278. MR 3916014, DOI 10.1016/j.topol.2019.01.022
- Colin Adams, Or Eisenberg, Jonah Greenberg, Kabir Kapoor, Zhen Liang, Kate O’Connor, Natalia Pacheco-Tallaj, and Yi Wang, tg-hyperbolicity of virtual links, J. Knot Theory Ramifications 28 (2019), no. 12, 1950080, 26. MR 4059928, DOI 10.1142/s0218216519500809
- Alena Andreevna Akimova and Sergei Vladimirovich Matveev, Classification of genus 1 virtual knots having at most five classical crossings, J. Knot Theory Ramifications 23 (2014), no. 6, 1450031, 19. MR 3253963, DOI 10.1142/S021821651450031X
- Abhijit Champanerkar, Ilya Kofman, and Jessica S. Purcell, Geometry of biperiodic alternating links, J. Lond. Math. Soc. (2) 99 (2019), no. 3, 807–830. MR 3977891, DOI 10.1112/jlms.12195
- Tommaso Cremaschi and José A. Rodríguez-Migueles, Hyperbolicity of link complements in Seifert-fibered spaces, Algebr. Geom. Topol. 20 (2020), no. 7, 3561–3588. MR 4194288, DOI 10.2140/agt.2020.20.3561
- Tommaso Cremaschi, José Andrés Rodriguŕz-Migueles, and Andrew Yarmola, On volumes and filling collections of multicurves, J. Topol. 15 (2022), no. 3, 1107–1153. MR 4442684, DOI 10.1112/topo.12246
- Marc Culler, Nathan M. Dunfield, Matthias Goerner, and Jeffrey R. Weeks, SnapPy, a computer program for studying the geometry and topology of $3$-manifolds, http://snappy.computop.org, 2022.
- Myfanwy E. Evans and Stephen T. Hyde, From three-dimensional weavings to swollen corneocytes, Journal of The Royal Society Interface 8 (2011), no. 62, 1274–1280.
- Myfanwy E. Evans, Vanessa Robins, and Stephen T. Hyde, Periodic entanglement II: weavings from hyperbolic line patterns, Acta Crystallogr. Sect. A 69 (2013), no. 3, 262–275. MR 3047743, DOI 10.1107/S0108767313001682
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- Allen Hatcher, Notes on basic 3-manifold topology, https://pi.math.cornell.edu/~hatcher/3M/3M.pdf, 2007.
- Joshua A. Howie and Jessica S. Purcell, Geometry of alternating links on surfaces, Trans. Amer. Math. Soc. 373 (2020), no. 4, 2349–2397. MR 4069222, DOI 10.1090/tran/7929
- Connie On Yu Hui and Jessica S. Purcell, On the geometry of rod packings in the 3-torus, Bull. Lond. Math. Soc. 56 (2024), no. 4, 1291–1309. MR 4735618, DOI 10.1112/blms.12993
- William Jaco, Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics, vol. 43, American Mathematical Society, Providence, RI, 1980. MR 565450, DOI 10.1090/cbms/043
- M. O’Keeffe and Sten Andersson, Rod packings and crystal chemistry, Acta Crystallogr. Sect. A 33 (1977), no. 6, 914–923.
- M. O’Keeffe, J. Plévert, Y. Teshima, Y. Watanabe, and T. Ogama, The invariant cubic rod (cylinder) packings: symmetries and coordinates, Acta Cryst. Sect. A 57 (2001), no. 1, 110–111. MR 1805573, DOI 10.1107/S010876730001151X
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, CA, 1976. MR 515288
- Nathaniel L. Rosi, Jaheon Kim, Mohamed Eddaoudi, Banglin Chen, Michael O’Keeffe, and Omar M. Yaghi, Rod Packings and Metal-Organic Frameworks Constructed from Rod-Shaped Secondary Building Units, J. Amer. Chem. Soc. 127 (2005), no. 5, 1504–1518 (eng).
- William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. MR 648524, DOI 10.1090/S0273-0979-1982-15003-0
Bibliographic Information
- Connie On Yu Hui
- Affiliation: School of Mathematics, Monash University, VIC 3800, Australia
- ORCID: 0000-0001-6932-444X
- Email: onyu.hui@monash.edu
- Received by editor(s): July 18, 2023
- Received by editor(s) in revised form: April 7, 2024, April 9, 2024, and May 12, 2024
- Published electronically: October 29, 2024
- Communicated by: David Futer
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 381-394
- MSC (2020): Primary 57K10, 57K12, 57K32, 57K35; Secondary 57M10, 51M10, 57Z15
- DOI: https://doi.org/10.1090/proc/16949
- MathSciNet review: 4840285