Compact sheaves on a locally compact space
HTML articles powered by AMS MathViewer
- by Oscar Bendix Harr;
- Proc. Amer. Math. Soc. 153 (2025), 55-68
- DOI: https://doi.org/10.1090/proc/17010
- Published electronically: November 21, 2024
- HTML | PDF | Request permission
Abstract:
Let $X$ be a hypercomplete locally compact Hausdorff space and let $\mathcal C$ be a compactly generated stable $\infty$-category. We describe the compact objects in the $\infty$-category of $\mathcal C$-valued sheaves $Shv(X,\mathcal C)$. When $X$ is a non-compact connected manifold and $\mathcal C$ is the unbounded derived $\infty$-category of a ring, our result recovers a result of Neeman. Furthermore, if $\mathcal C$ is a nontrivial compactly generated stable $\infty$-category, we show that $Shv(X,\mathcal C)$ is compactly generated if and only if $X$ is totally disconnected.References
- Ko Aoki, Tensor triangular geometry of filtered objects and sheaves, Math. Z. 303 (2023), no. 3, Paper No. 62, 27. MR 4549105, DOI 10.1007/s00209-023-03210-z
- Dustin Clausen and Akhil Mathew, Hyperdescent and étale $K$-theory, Invent. Math. 225 (2021), no. 3, 981–1076. MR 4296353, DOI 10.1007/s00222-021-01043-3
- Kęstutis Česnavičius and Peter Scholze, Purity for flat cohomology, Ann. of Math. (2) 199 (2024), no. 1, 51–180. MR 4681144, DOI 10.4007/annals.2024.199.1.2
- Alexander I. Efimov, K-theory of large categories, ICM—International Congress of Mathematicians. Vol. 3. Sections 1–4, EMS Press, Berlin, [2023] ©2023, pp. 2212–2226. MR 4680315
- Alexander I. Efimov, K-theory of large categories, ICM—International Congress of Mathematicians. Vol. 3. Sections 1–4, EMS Press, Berlin, [2023] ©2023, pp. 2212–2226. MR 4680315
- Peter J. Haine, Descent for sheaves on compact Hausdorff spaces, Preprint, arXiv:2210.00186, 2022.
- Peter J. Haine, From nonabelian basechange to basechange with coefficients, Preprint, arXiv:2108.03545, 2022.
- M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43–60. MR 251026, DOI 10.1090/S0002-9947-1969-0251026-X
- Marc Hoyois, Is the $\infty$-topos $Sh(X)$ hypercomplete whenever $X$ is a CW complex?, MathOverflow, available at https://mathoverflow.net/q/247061, 2016, Accessed 24-08-2023.
- Marc Hoyois, $K$-theory of dualizable categories (after A. Efimov), available at https://hoyois.app.uni-regensburg.de/papers/efimov.pdf, 2018, Accessed 24-07-2023.
- Mikala Ørsnes Jansen, The stratified homotopy type of the reductive Borel-Serre compactification, Int. Math. Res. Not. IMRN 19 (2023), 16394–16452. MR 4651892, DOI 10.1093/imrn/rnac289
- Xin Jin and David Treumann, Brane structures in microlocal sheaf theory, J. Topol. 17 (2024), no. 1, Paper No. e12325, 68. MR 4821225, DOI 10.1112/topo.12325
- Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Springer Berlin, Heidelberg, 1990.
- Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659, DOI 10.1515/9781400830558
- Jacob Lurie, Higher algebra, available at https://www.math.ias.edu/~lurie/papers/HA.pdf, 2017, Accessed 24-07-2023.
- Jacob Lurie, Spectral algebraic geometry, available at https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf, 2018.
- Louis Martini and Sebastian Wolf, Presentable categories internal to an $\infty$-topos, Preprint, arXiv:2209.05103, 2022.
- Amnon Neeman, On the derived category of sheaves on a manifold, Doc. Math. 6 (2001), 483–488. MR 1874232, DOI 10.4171/dm/111
- Peter Scholze, Six-functor formalisms, available at https://people.mpim-bonn.mpg.de/scholze/SixFunctors.pdf, Accessed 24-08-2023.
- Bernard Saint-Donat, Techniques de descente cohomologique, Théorie des topos et cohomologie étale des schémas. Tomes 1 à 3 (1972), 327.
- Jean-Louis Verdier, Dimension des espaces localement compacts, C. R. Acad. Sci. Paris 261 (1965), 5293–5296 (French). MR 189022
- Marco Volpe, The six operations in topology, Preprint, arXiv:2110.10212, 2023.
Bibliographic Information
- Oscar Bendix Harr
- Affiliation: Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
- ORCID: 0000-0003-2317-8533
- Email: oscar.at.ofs@gmail.com
- Received by editor(s): October 5, 2023
- Received by editor(s) in revised form: June 24, 2024, and June 28, 2024
- Published electronically: November 21, 2024
- Additional Notes: The author was partially supported by the Danish National Research Foundation through the Copenhagen Centre for Geometry and Topology (DRNF151).
- Communicated by: Julie Bergner
- © Copyright 2009 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 55-68
- MSC (2020): Primary 18F20; Secondary 55P42
- DOI: https://doi.org/10.1090/proc/17010
- MathSciNet review: 4840257