On certain equivalences of metric spaces
HTML articles powered by AMS MathViewer
- by Eva Pernecká and Jan Spěvák;
- Proc. Amer. Math. Soc. 153 (2025), 239-249
- DOI: https://doi.org/10.1090/proc/17019
- Published electronically: November 25, 2024
- HTML | PDF | Request permission
Abstract:
The normed spaces of molecules constructed by Arens and Eells allow us to define two natural equivalence relations on the class of complete metric spaces. We say that two complete metric spaces $M$ and $N$ are $\mathcal {M}\hspace {-1.5pt}\mathcal {ol}$-equivalent if their normed spaces of molecules are isomorphic and we say that they are $\mathcal {F}$-equivalent if the corresponding completions – the Lipschitz-free Banach spaces $\mathcal {F}(M)$ and $\mathcal {F}(N)$ – are isomorphic.
In this note, we compare these and some other relevant equivalences of metric spaces. Clearly, $\mathcal {M}\hspace {-1.5pt}\mathcal {ol}$-equivalent spaces are $\mathcal {F}$-equivalent. Our main result states that $\mathcal {M}\hspace {-1.5pt}\mathcal {ol}$-equivalent spaces must have the same covering dimension. In combination with the work of Godard, this implies that $\mathcal {M}\hspace {-1.5pt}\mathcal {ol}$-equivalence is indeed strictly stronger than $\mathcal {F}$-equivalence. However, $\mathcal {M}\hspace {-1.5pt}\mathcal {ol}$-equivalent spaces need not be homeomorphic, as we demonstrate through a general construction. We also observe that $\mathcal {M}\hspace {-1.5pt}\mathcal {ol}$-equivalence does not preserve the Assouad dimension.
We introduce a natural notion of a free basis to simplify the notation.
References
- Fernando Albiac, José L. Ansorena, Marek Cúth, and Michal Doucha, Embeddability of $\ell _p$ and bases in Lipschitz free $p$-spaces for $0<p\le 1$, J. Funct. Anal. 278 (2020), no. 4, 108354, 33. MR 4044745, DOI 10.1016/j.jfa.2019.108354
- Fernando Albiac, José L. Ansorena, Marek Cúth, and Michal Doucha, Lipschitz free spaces isomorphic to their infinite sums and geometric applications, Trans. Amer. Math. Soc. 374 (2021), no. 10, 7281–7312. MR 4315605, DOI 10.1090/tran/8444
- Fernando Albiac, José L. Ansorena, Marek Cúth, and Michal Doucha, Lipschitz algebras and Lipschitz-free spaces over unbounded metric spaces, Int. Math. Res. Not. IMRN 20 (2022), 16327–16362. MR 4498176, DOI 10.1093/imrn/rnab193
- Ramón J. Aliaga, Eva Pernecká, Colin Petitjean, and Antonín Procházka, Supports in Lipschitz-free spaces and applications to extremal structure, J. Math. Anal. Appl. 489 (2020), no. 1, 124128, 14. MR 4083124, DOI 10.1016/j.jmaa.2020.124128
- Richard F. Arens and James Eells Jr., On embedding uniform and topological spaces, Pacific J. Math. 6 (1956), 397–403. MR 81458, DOI 10.2140/pjm.1956.6.397
- Alexander Arhangel′skii and Mikhail Tkachenko, Topological groups and related structures, Atlantis Studies in Mathematics, vol. 1, Atlantis Press, Paris; World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. MR 2433295, DOI 10.2991/978-94-91216-35-0
- Patrice Assouad, Espaces métriques, plongements, facteurs, Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], No. 223-7769, Université Paris XI, U.E.R. Mathématique, Orsay, 1977 (French). Thèse de doctorat. MR 644642
- M. J. Chasco, X. Domínguez, and M. G. Tkachenko, Topological groups of Lipschitz functions and Graev metrics, J. Math. Anal. Appl. 508 (2022), no. 1, Paper No. 125882, 16. MR 4348800, DOI 10.1016/j.jmaa.2021.125882
- Ryszard Engelking, Theory of dimensions finite and infinite, Sigma Series in Pure Mathematics, vol. 10, Heldermann Verlag, Lemgo, 1995. MR 1363947
- Luis C. García-Lirola and Antonín Procházka, Pełczyński space is isomorphic to the Lipschitz free space over a compact set, Proc. Amer. Math. Soc. 147 (2019), no. 7, 3057–3060. MR 3973906, DOI 10.1090/proc/14446
- A. Godard, Tree metrics and their Lipschitz-free spaces, Proc. Amer. Math. Soc. 138 (2010), no. 12, 4311–4320. MR 2680057, DOI 10.1090/S0002-9939-2010-10421-5
- M. I. Graev, Free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 279–324 (Russian). MR 25474
- S. P. Gul′ko, On uniform homeomorphisms of spaces of continuous functions, Trudy Mat. Inst. Steklov. 193 (1992), 82–88 (Russian); English transl., Proc. Steklov Inst. Math. 3(193) (1993), 87–93. MR 1265990
- Pedro Levit Kaufmann, Products of Lipschitz-free spaces and applications, Studia Math. 226 (2015), no. 3, 213–227. MR 3356002, DOI 10.4064/sm226-3-2
- Jouni Luukkainen, Assouad dimension: antifractal metrization, porous sets, and homogeneous measures, J. Korean Math. Soc. 35 (1998), no. 1, 23–76. MR 1608518
- Assaf Naor and Gideon Schechtman, Planar earthmover is not in $L_1$, SIAM J. Comput. 37 (2007), no. 3, 804–826. MR 2341917, DOI 10.1137/05064206X
- Eva Pernecká and Jan Spěvák, Topological groups with invariant linear spans, Rev. Mat. Complut. 35 (2022), no. 1, 219–226. MR 4365181, DOI 10.1007/s13163-020-00383-7
- Jan Spěvák, Finite-valued mappings preserving dimension, Houston J. Math. 37 (2011), no. 1, 327–348. MR 2786558
- Jan Spěvák, Module-valued functors preserving the covering dimension, Comment. Math. Univ. Carolin. 56 (2015), no. 3, 377–399. MR 3390284, DOI 10.14712/1213-7243.2015.131
- Nik Weaver, Lipschitz algebras, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018. Second edition of [ MR1832645]. MR 3792558, DOI 10.1142/9911
Bibliographic Information
- Eva Pernecká
- Affiliation: Department of Applied Mathematics, Faculty of Information Technology, Czech Technical University in Prague, Thákurova 9, 16000 Prague 6, Czech Republic
- ORCID: 0000-0003-1600-7963
- Email: perneeva@fit.cvut.cz
- Jan Spěvák
- Affiliation: Department of Applied Mathematics, Faculty of Information Technology, Czech Technical University in Prague, Thákurova 9, 16000 Prague 6, Czech Republic
- ORCID: 0000-0003-4274-8343
- Email: spevajan@fit.cvut.cz
- Received by editor(s): April 12, 2024
- Received by editor(s) in revised form: July 11, 2024, July 16, 2024, and July 19, 2024
- Published electronically: November 25, 2024
- Additional Notes: The work on this paper was supported by the Czech Science Foundation (GAČR) grant 22-32829S
- Communicated by: Stephen Dilworth
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 239-249
- MSC (2020): Primary 46B03, 54E35, 54F45
- DOI: https://doi.org/10.1090/proc/17019
- MathSciNet review: 4840272