Scalar-flat Kähler metrics with varying cone angle singularities along a divisor
HTML articles powered by AMS MathViewer
- by Gonçalo Oliveira and Rosa Sena-Dias;
- Proc. Amer. Math. Soc. 153 (2025), 331-339
- DOI: https://doi.org/10.1090/proc/17032
- Published electronically: November 25, 2024
- HTML | PDF | Request permission
Abstract:
Using an ansatz due to LeBrun we construct complete scalar-flat Kähler metrics with a prescribed varying conical singularity along a divisor.References
- Michael T. Anderson, The Dirichlet problem at infinity for manifolds of negative curvature, J. Differential Geom. 18 (1983), no. 4, 701–721 (1984). MR 730923
- Michael T. Anderson and Richard Schoen, Positive harmonic functions on complete manifolds of negative curvature, Ann. of Math. (2) 121 (1985), no. 3, 429–461. MR 794369, DOI 10.2307/1971181
- Michael Atiyah and Claude Lebrun, Curvature, cones and characteristic numbers, Math. Proc. Cambridge Philos. Soc. 155 (2013), no. 1, 13–37. MR 3065256, DOI 10.1017/S0305004113000169
- Martin de Borbon, The Gibbons-Hawking ansatz over a wedge, J. Geom. Phys. 120 (2017), 228–241. MR 3712159, DOI 10.1016/j.geomphys.2017.06.002
- Martin de Borbon and Cristiano Spotti, Local models for conical Kähler-Einstein metrics, Proc. Amer. Math. Soc. 147 (2019), no. 3, 1217–1230. MR 3896068, DOI 10.1090/proc/14302
- Chi Hin Chan and Magdalena Czubak, Non-uniqueness of the Leray-Hopf solutions in the hyperbolic setting, Dyn. Partial Differ. Equ. 10 (2013), no. 1, 43–77. MR 3041023, DOI 10.4310/DPDE.2013.v10.n1.a3
- Xiuxiong Chen, Simon Donaldson, and Song Sun, Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities, J. Amer. Math. Soc. 28 (2015), no. 1, 183–197. MR 3264766, DOI 10.1090/S0894-0347-2014-00799-2
- S. K. Donaldson, Kähler metrics with cone singularities along a divisor, Essays in mathematics and its applications, Springer, Heidelberg, 2012, pp. 49–79. MR 2975584, DOI 10.1007/978-3-642-28821-0_{4}
- S. W. Hawking, Gravitational instantons, Phys. Lett. A 60 (1977), no. 2, 81–83. MR 465052, DOI 10.1016/0375-9601(77)90386-3
- Thalia D. Jeffres, Uniqueness of Kähler-Einstein cone metrics, Publ. Mat. 44 (2000), no. 2, 437–448. MR 1800816, DOI 10.5565/PUBLMAT_{4}4200_{0}4
- Thalia Jeffres, Rafe Mazzeo, and Yanir A. Rubinstein, Kähler-Einstein metrics with edge singularities, Ann. of Math. (2) 183 (2016), no. 1, 95–176. MR 3432582, DOI 10.4007/annals.2016.183.1.3
- Claude LeBrun, Explicit self-dual metrics on $\textbf {C}\textrm {P}_2\#\cdots \#\textbf {C}\textrm {P}_2$, J. Differential Geom. 34 (1991), no. 1, 223–253. MR 1114461
- Rafe Mazzeo, Kähler-Einstein metrics singular along a smooth divisor, Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1999) Univ. Nantes, Nantes, 1999, pp. Exp. No. VI, 10. MR 1718970
- Dennis Sullivan, The Dirichlet problem at infinity for a negatively curved manifold, J. Differential Geom. 18 (1983), no. 4, 723–732 (1984). MR 730924
- M. Taylor, The Dirichlet problem on the hyperbolic ball, https://mtaylor.web.unc.edu/wp-content/uploads/sites/16915/2018/04/dphb.pdf, 2018.
Bibliographic Information
- Gonçalo Oliveira
- Affiliation: Department of Mathematics and Center for Mathematical Analysis, Geometry and Dynamical Systems, Instituto Superior Técnico, Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- MR Author ID: 1087767
- ORCID: 0000-0002-4990-1788
- Email: goncalo.m.f.oliveira@tecnico.ulisboa.pt, galato97@gmail.com
- Rosa Sena-Dias
- Affiliation: Department of Mathematics and Center for Mathematical Analysis, Geometry and Dynamical Systems, Instituto Superior Técnico, Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- MR Author ID: 800916
- Email: rsenadias@math.ist.utl.pt
- Received by editor(s): December 29, 2023
- Received by editor(s) in revised form: August 1, 2024
- Published electronically: November 25, 2024
- Additional Notes: This work was partially supported by the Fundação para a Ciência e a Tecnologia (FCT/Portugal) through project EXPL/MAT-PUR/1408/2021EKsta.
- Communicated by: Lu Wang
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 331-339
- MSC (2020): Primary 53C25, 53C55, 32Q15
- DOI: https://doi.org/10.1090/proc/17032
- MathSciNet review: 4840280