Mutual singularity of Riesz products on the unit sphere
HTML articles powered by AMS MathViewer
- by Evgueni Doubtsov;
- Proc. Amer. Math. Soc. 153 (2025), 269-277
- DOI: https://doi.org/10.1090/proc/17036
- Published electronically: November 25, 2024
- HTML | PDF | Request permission
Abstract:
We prove analogs of Peyrière’s mutual singularity theorem for standard and generalized Riesz products on the unit sphere of $\mathbb {C}^n$, $n\ge 2$. As a corollary, we obtain an analog of Zygmund’s dichotomy for the Riesz products under consideration.References
- A. B. Aleksandrov, Inner functions on compact spaces, Funktsional. Anal. i Prilozhen. 18 (1984), no. 2, 1–13 (Russian). MR 745695
- Aleksei B. Aleksandrov and Evgueni Doubtsov, Clark measures on the complex sphere, J. Funct. Anal. 278 (2020), no. 2, 108314, 30. MR 4030271, DOI 10.1016/j.jfa.2019.108314
- J. Bourgain, Applications of the spaces of homogeneous polynomials to some problems on the ball algebra, Proc. Amer. Math. Soc. 93 (1985), no. 2, 277–283. MR 770536, DOI 10.1090/S0002-9939-1985-0770536-4
- Evgueni Doubtsov, Henkin measures, Riesz products and singular sets, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 3, 699–728 (English, with English and French summaries). MR 1644069, DOI 10.5802/aif.1635
- E. S. Dubtsov, The multidimensional Ivashev-Musatov theorem and slice measures, Algebra i Analiz 14 (2002), no. 6, 101–128 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 14 (2003), no. 6, 963–983. MR 1965915
- Jacques Peyrière, Étude de quelques propriétés des produits de Riesz, Ann. Inst. Fourier (Grenoble) 25 (1975), no. 2, xii, 127–169. MR 404973, DOI 10.5802/aif.557
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften, vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594, DOI 10.1007/978-1-4613-8098-6
- Walter Rudin, New constructions of functions holomorphic in the unit ball of $\textbf {C}^n$, CBMS Regional Conference Series in Mathematics, vol. 63, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR 840468, DOI 10.1090/cbms/063
- J. Ryll and P. Wojtaszczyk, On homogeneous polynomials on a complex ball, Trans. Amer. Math. Soc. 276 (1983), no. 1, 107–116. MR 684495, DOI 10.1090/S0002-9947-1983-0684495-9
- A. Zygmund, Trigonometric series. Vol. I, II, 3rd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2002. With a foreword by Robert A. Fefferman. MR 1963498
Bibliographic Information
- Evgueni Doubtsov
- Affiliation: St. Petersburg Department of Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191023, Russia
- MR Author ID: 361869
- ORCID: 0000-0001-6648-4026
- Email: dubtsov@pdmi.ras.ru
- Received by editor(s): April 3, 2024
- Received by editor(s) in revised form: July 25, 2024, and August 6, 2024
- Published electronically: November 25, 2024
- Additional Notes: This research was supported by the Russian Science Foundation (grant No. 23-11-00171), https://rscf.ru/project/23-11-00171/.
- Communicated by: Harold P. Boas
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 269-277
- MSC (2020): Primary 32A50, 28A50, 32A08, 42A55, 43A85
- DOI: https://doi.org/10.1090/proc/17036
- MathSciNet review: 4840275