The separating Noether number of the direct sum of several copies of a cyclic group
HTML articles powered by AMS MathViewer
- by Barna Schefler;
- Proc. Amer. Math. Soc. 153 (2025), 69-79
- DOI: https://doi.org/10.1090/proc/17044
- Published electronically: October 29, 2024
- HTML | PDF | Request permission
Abstract:
The exact value of the separating Noether number of some finite abelian groups is determined, including the direct sums of cyclic groups of the same order.References
- Kálmán Cziszter, Mátyás Domokos, and Alfred Geroldinger, The interplay of invariant theory with multiplicative ideal theory and with arithmetic combinatorics, Multiplicative ideal theory and factorization theory, Springer Proc. Math. Stat., vol. 170, Springer, [Cham], 2016, pp. 43–95. MR 3565804, DOI 10.1007/978-3-319-38855-7_{3}
- Harm Derksen and Gregor Kemper, Computational invariant theory, Second enlarged edition, Encyclopaedia of Mathematical Sciences, vol. 130, Springer, Heidelberg, 2015. With two appendices by Vladimir L. Popov, and an addendum by Norbert A’Campo and Popov; Invariant Theory and Algebraic Transformation Groups, VIII. MR 3445218, DOI 10.1007/978-3-662-48422-7
- M. Domokos, Typical separating invariants, Transform. Groups 12 (2007), no. 1, 49–63. MR 2308028, DOI 10.1007/s00031-005-1131-4
- M. Domokos, Degree bound for separating invariants of abelian groups, Proc. Amer. Math. Soc. 145 (2017), no. 9, 3695–3708. MR 3665025, DOI 10.1090/proc/13534
- Mátyás Domokos, Separating monomials for diagonalizable actions, Bull. Lond. Math. Soc. 55 (2023), no. 1, 205–223. MR 4568337, DOI 10.1112/blms.12722
- Mátyás Domokos and Endre Szabó, Helly dimension of algebraic groups, J. Lond. Math. Soc. (2) 84 (2011), no. 1, 19–34. MR 2819688, DOI 10.1112/jlms/jdq101
- Weidong Gao and Alfred Geroldinger, Zero-sum problems and coverings by proper cosets, European J. Combin. 24 (2003), no. 5, 531–549. MR 1983677, DOI 10.1016/S0195-6698(03)00033-7
- Weidong Gao and Alfred Geroldinger, Zero-sum problems in finite abelian groups: a survey, Expo. Math. 24 (2006), no. 4, 337–369. MR 2313123, DOI 10.1016/j.exmath.2006.07.002
- Alfred Geroldinger and Franz Halter-Koch, Non-unique factorizations, Pure and Applied Mathematics (Boca Raton), vol. 278, Chapman & Hall/CRC, Boca Raton, FL, 2006. Algebraic, combinatorial and analytic theory. MR 2194494, DOI 10.1201/9781420003208
- Alfred Geroldinger, Manfred Liebmann, and Andreas Philipp, On the Davenport constant and on the structure of extremal zero-sum free sequences, Period. Math. Hungar. 64 (2012), no. 2, 213–225. MR 2925169, DOI 10.1007/s10998-012-3378-6
- Alfred Geroldinger and Rudolf Schneider, On Davenport’s constant, J. Combin. Theory Ser. A 61 (1992), no. 1, 147–152. MR 1178393, DOI 10.1016/0097-3165(92)90061-X
- Benjamin Girard, An asymptotically tight bound for the Davenport constant, J. Éc. polytech. Math. 5 (2018), 605–611 (English, with English and French summaries). MR 3852262, DOI 10.5802/jep.79
- David J. Grynkiewicz, Structural additive theory, Developments in Mathematics, vol. 30, Springer, Cham, 2013. MR 3097619, DOI 10.1007/978-3-319-00416-7
- Martin Kohls and Hanspeter Kraft, Degree bounds for separating invariants, Math. Res. Lett. 17 (2010), no. 6, 1171–1182. MR 2729640, DOI 10.4310/MRL.2010.v17.n6.a15
- Fabio Enrique Brochero Martínez and Sávio Ribas, The $\{1,s\}$-weighted Davenport constant in $C^k_n$, Integers 22 (2022), Paper No. A36, 18. MR 4398295
- Emmy Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann. 77 (1915), no. 1, 89–92 (German). MR 1511848, DOI 10.1007/BF01456821
- John E. Olson, A combinatorial problem on finite Abelian groups. I, J. Number Theory 1 (1969), 8–10. MR 237641, DOI 10.1016/0022-314X(69)90021-3
- John E. Olson, A combinatorial problem on finite Abelian groups. II, J. Number Theory 1 (1969), 195–199. MR 240200, DOI 10.1016/0022-314X(69)90037-7
- B. Schefler, The separating Noether number of abelian groups of rank two, arXiv:2403.13200, 2024.
- Barbara J. Schmid, Finite groups and invariant theory, Topics in invariant theory (Paris, 1989/1990) Lecture Notes in Math., vol. 1478, Springer, Berlin, 1991, pp. 35–66. MR 1180987, DOI 10.1007/BFb0083501
Bibliographic Information
- Barna Schefler
- Affiliation: Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
- Email: scheflerbarna@yahoo.com
- Received by editor(s): November 21, 2023
- Received by editor(s) in revised form: June 29, 2024
- Published electronically: October 29, 2024
- Additional Notes: The author was partially supported by the Hungarian National Research, Development and Innovation Office, NKFIH K 138828.
- Communicated by: Jerzy Weyman
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 69-79
- MSC (2020): Primary 13A50; Secondary 11B75, 20D60
- DOI: https://doi.org/10.1090/proc/17044
- MathSciNet review: 4840258