An explicit Wishart moment formula for the product of two disjoint principal minors
HTML articles powered by AMS MathViewer
- by Christian Genest, Frédéric Ouimet and Donald Richards;
- Proc. Amer. Math. Soc. 153 (2025), 1299-1311
- DOI: https://doi.org/10.1090/proc/17077
- Published electronically: December 12, 2024
- HTML | PDF | Request permission
Abstract:
This paper provides the first explicit formula for the expectation of the product of two disjoint principal minors of a Wishart random matrix, solving a part of a broader problem put forth by Samuel S. Wilks [Ann. of Math. (2) 35 (1934), pp. 312–340]. The proof makes crucial use of hypergeometric functions of matrix argument and their Laplace transforms. Additionally, a Wishart generalization of the Gaussian product inequality conjecture is formulated and a stronger quantitative version is proved to hold in the case of two minors.References
- J. Arias-de-Reyna, Gaussian variables, polynomials and permanents, Linear Algebra Appl. 285 (1998), no. 1-3, 107–114. MR 1653495, DOI 10.1016/S0024-3795(98)10125-8
- Carlos Benítez, Yannis Sarantopoulos, and Andrew Tonge, Lower bounds for norms of products of polynomials, Math. Proc. Cambridge Philos. Soc. 124 (1998), no. 3, 395–408. MR 1636556, DOI 10.1017/S030500419800259X
- A. G. Constantine, Some non-central distribution problems in multivariate analysis, Ann. Math. Statist. 34 (1963), 1270–1285. MR 181056, DOI 10.1214/aoms/1177703863
- Mathias Drton, Hélène Massam, and Ingram Olkin, Moments of minors of Wishart matrices, Ann. Statist. 36 (2008), no. 5, 2261–2283. MR 2458187, DOI 10.1214/07-AOS522
- Dominic Edelmann, Donald Richards, and Thomas Royen, Product inequalities for multivariate Gaussian, gamma, and positively upper orthant dependent distributions, Statist. Probab. Lett. 197 (2023), Paper No. 109820, 8. MR 4554766, DOI 10.1016/j.spl.2023.109820
- Péter E. Frenkel, Pfaffians, Hafnians and products of real linear functionals, Math. Res. Lett. 15 (2008), no. 2, 351–358. MR 2385646, DOI 10.4310/MRL.2008.v15.n2.a12
- Christian Genest and Frédéric Ouimet, A combinatorial proof of the Gaussian product inequality beyond the $\rm MTP_2$ case, Depend. Model. 10 (2022), no. 1, 236–244. MR 4466643, DOI 10.1515/demo-2022-0116
- Christian Genest and Frédéric Ouimet, Miscellaneous results related to the Gaussian product inequality conjecture for the joint distribution of traces of Wishart matrices, J. Math. Anal. Appl. 523 (2023), no. 1, Paper No. 126951, 10. MR 4538422, DOI 10.1016/j.jmaa.2022.126951
- C. Genest, F. Ouimet, and D. Richards, NumericalValidationWishart, 2024a. Available online at https://github.com/FredericOuimetMcGill.
- C. Genest, F. Ouimet, and D. Richards, On Wilks’ joint moment formulas for embedded principal minors of Wishart random matrices, Stat 13 (2024), no. 2, Paper No. e706, 6. MR 4757806, DOI 10.1002/sta4.706
- C. Genest, F. Ouimet, and D. Richards, On the Gaussian product inequality conjecture for disjoint principal minors of Wishart random matrices, Preprint, 2024c, 1–27. arXiv:2311.00202.
- Kenneth I. Gross and Donald St. P. Richards, Special functions of matrix argument. I. Algebraic induction, zonal polynomials, and hypergeometric functions, Trans. Amer. Math. Soc. 301 (1987), no. 2, 781–811. MR 882715, DOI 10.1090/S0002-9947-1987-0882715-2
- Ronan Herry, Dominique Malicet, and Guillaume Poly, A short proof of a strong form of the three dimensional Gaussian product inequality, Proc. Amer. Math. Soc. 152 (2024), no. 1, 403–409. MR 4661091, DOI 10.1090/proc/16448
- Carl S. Herz, Bessel functions of matrix argument, Ann. of Math. (2) 61 (1955), 474–523. MR 69960, DOI 10.2307/1969810
- G. Hillier and R. M. Kan, Moments of a Wishart matrix, J. Quant. Econ. 19 (2021), Suppl 1, S141–S162, \PrintDOI{10.1007/s40953-021-00267-7}.
- Grant Hillier and Raymond M. Kan, On the expectations of equivariant matrix-valued functions of Wishart and inverse Wishart matrices, Scand. J. Stat. 51 (2024), no. 2, 697–723. MR 4828106, DOI 10.1111/sjos.12707
- Ze-Chun Hu, Han Zhao, and Qian-Qian Zhou, Quantitative versions of the two-dimensional Gaussian product inequalities, J. Inequal. Appl. , posted on (2023), Paper No. 2, 11. MR 4530374, DOI 10.1186/s13660-022-02906-w
- Alan T. James, Distributions of matrix variates and latent roots derived from normal samples, Ann. Math. Statist. 35 (1964), 475–501. MR 181057, DOI 10.1214/aoms/1177703550
- Samuel Karlin and Yosef Rinott, Total positivity properties of absolute value multinormal variables with applications to confidence interval estimates and related probabilistic inequalities, Ann. Statist. 9 (1981), no. 5, 1035–1049. MR 628759
- Bara Kim, Jeongsim Kim, and Jerim Kim, Three-dimensional Gaussian product inequality with positive integer order moments, J. Math. Anal. Appl. 542 (2025), no. 2, Paper No. 128804, 21. MR 4794515, DOI 10.1016/j.jmaa.2024.128804
- Plamen Koev and Alan Edelman, The efficient evaluation of the hypergeometric function of a matrix argument, Math. Comp. 75 (2006), no. 254, 833–846. MR 2196994, DOI 10.1090/S0025-5718-06-01824-2
- Guolie Lan, Ze-Chun Hu, and Wei Sun, The three-dimensional Gaussian product inequality, J. Math. Anal. Appl. 485 (2020), no. 2, 123858, 19. MR 4052574, DOI 10.1016/j.jmaa.2020.123858
- Gérard Letac and Hélène Massam, All invariant moments of the Wishart distribution, Scand. J. Statist. 31 (2004), no. 2, 295–318. MR 2066255, DOI 10.1111/j.1467-9469.2004.01-043.x
- Zhenxia Liu, Zhi Wang, and Xiangfeng Yang, A Gaussian expectation product inequality, Statist. Probab. Lett. 124 (2017), 1–4. MR 3608204, DOI 10.1016/j.spl.2016.12.018
- I-Li Lu and Donald St. P. Richards, MacMahon’s master theorem, representation theory, and moments of Wishart distributions, Adv. in Appl. Math. 27 (2001), no. 2-3, 531–547. Special issue in honor of Dominique Foata’s 65th birthday (Philadelphia, PA, 2000). MR 1868979, DOI 10.1006/aama.2001.0748
- Tzon-Tzer Lu and Sheng-Hua Shiou, Inverses of $2\times 2$ block matrices, Comput. Math. Appl. 43 (2002), no. 1-2, 119–129. MR 1873248, DOI 10.1016/S0898-1221(01)00278-4
- Dominique Malicet, Ivan Nourdin, Giovanni Peccati, and Guillaume Poly, Squared chaotic random variables: new moment inequalities with applications, J. Funct. Anal. 270 (2016), no. 2, 649–670. MR 3425898, DOI 10.1016/j.jfa.2015.10.013
- Robb J. Muirhead, Aspects of multivariate statistical theory, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1982. MR 652932, DOI 10.1002/9780470316559
- Seiji Nabeya, Absolute moments in $2$-dimensional normal distribution, Ann. Inst. Statist. Math., Tokyo 3 (1951), 2–6. MR 45347, DOI 10.1007/bf02949770
- Seiji Nabeya, Absolute moments in $3$-dimensional normal distribution, Ann. Inst. Statist. Math., Tokyo 4 (1952), 15–30. MR 52072, DOI 10.1007/bf02949786
- Haruhiko Ogasawara, A non-recursive formula for various moments of the multivariate normal distribution with sectional truncation, J. Multivariate Anal. 183 (2021), Paper No. 104729, 14. MR 4219331, DOI 10.1016/j.jmva.2021.104729
- Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010. With 1 CD-ROM (Windows, Macintosh and UNIX). MR 2723248
- Thomas Royen, A simple proof of the Gaussian correlation conjecture extended to some multivariate gamma distributions, Far East J. Theor. Stat. 48 (2014), no. 2, 139–145. MR 3289621
- Oliver Russell and Wei Sun, Some new Gaussian product inequalities, J. Math. Anal. Appl. 515 (2022), no. 2, Paper No. 126439, 21. MR 4445681, DOI 10.1016/j.jmaa.2022.126439
- Oliver Russell and Wei Sun, An opposite Gaussian product inequality, Statist. Probab. Lett. 191 (2022), Paper No. 109656, 6. MR 4471184, DOI 10.1016/j.spl.2022.109656
- Oliver Russell and Wei Sun, Using sums-of-squares to prove Gaussian product inequalities, Depend. Model. 12 (2024), no. 1, Paper No. 20240003, 13. MR 4760098, DOI 10.1515/demo-2024-0003
- Akimichi Takemura, Zonal polynomials, Institute of Mathematical Statistics Lecture Notes—Monograph Series, vol. 4, Institute of Mathematical Statistics, Hayward, CA, 1984. MR 744672, DOI 10.1214/lnms/1215465457
- D. Vere-Jones, Alpha-permanents and their applications to multivariate gamma, negative binomial and ordinary binomial distributions, New Zealand J. Math. 26 (1997), no. 1, 125–149. MR 1450811
- Ang Wei, Representations of the absolute value function and applications in Gaussian estimates, J. Theoret. Probab. 27 (2014), no. 4, 1059–1070. MR 3278931, DOI 10.1007/s10959-013-0486-z
- S. S. Wilks, Certain generalizations in the analysis of variance, Biometrika 24 (1932), no. 3/4, 471–494, \PrintDOI{10.2307/2331979}.
- S. S. Wilks, Moment-generating operators for determinants of product moments in samples from a normal system, Ann. of Math. (2) 35 (1934), no. 2, 312–340. MR 1503165, DOI 10.2307/1968435
- J. Wishart, The generalised product moment distribution in samples from a normal multivariate population, Biometrika, 20A (1928), no. 1/2, 32–52, \PrintDOI{10.2307/2331939}.
- Qian-Qian Zhou, Han Zhao, Ze-Chun Hu, and Renming Song, Some new results on Gaussian product inequalities, J. Math. Anal. Appl. 531 (2024), no. 2, Paper No. 127907, 13. MR 4666255, DOI 10.1016/j.jmaa.2023.127907
Bibliographic Information
- Christian Genest
- Affiliation: Department of Mathematics and Statistics, McGill University, Montréal, Québec H3A 0B9, Canada
- MR Author ID: 72360
- ORCID: 0000-0002-1764-0202
- Email: christian.genest@mcgill.ca
- Frédéric Ouimet
- Affiliation: Department of Mathematics and Statistics, McGill University, Montréal, Québec H3A 0B9, Canada
- ORCID: 0000-0001-7933-5265
- Email: frederic.ouimet2@mcgill.ca
- Donald Richards
- Affiliation: Department of Statistics, Penn State University, University Park, Pennsylvania 16802
- MR Author ID: 190669
- Email: richards@stat.psu.edu
- Received by editor(s): March 24, 2024
- Received by editor(s) in revised form: September 15, 2024
- Published electronically: December 12, 2024
- Additional Notes: The first author’s research was funded in part by the Canada Research Chairs Program and the Natural Sciences and Engineering Research Council of Canada.
The second author’s funding was made possible through a contribution to Christian Genest’s research program from the Trottier Institute for Science and Public Policy. - Communicated by: Amarjit Budhiraja
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 1299-1311
- MSC (2020): Primary 60E05; Secondary 33C20, 39B62, 44A10, 60E15, 60G15
- DOI: https://doi.org/10.1090/proc/17077