Decidability in geometric grid classes of permutations
HTML articles powered by AMS MathViewer
- by Samuel Braunfeld;
- Proc. Amer. Math. Soc. 153 (2025), 987-1000
- DOI: https://doi.org/10.1090/proc/17083
- Published electronically: December 12, 2024
- HTML | PDF | Request permission
Abstract:
We prove that the basis and the generating function of a geometric grid class of permutations $\mathrm {Geom}(M)$ are computable from the matrix $M$, as well as some variations on this result. Our main tool is monadic second-order logic on permutations and words.References
- Michael H. Albert, M. D. Atkinson, Mathilde Bouvel, Nik Ruškuc, and Vincent Vatter, Geometric grid classes of permutations, Trans. Amer. Math. Soc. 365 (2013), no. 11, 5859–5881. MR 3091268, DOI 10.1090/S0002-9947-2013-05804-7
- Michael H. Albert, Nik Ruškuc, and Vincent Vatter, Inflations of geometric grid classes of permutations, Israel J. Math. 205 (2015), no. 1, 73–108. MR 3314583, DOI 10.1007/s11856-014-1098-8
- Bogdan Alecu, Robert Ferguson, Mamadou Moustapha Kanté, Vadim V. Lozin, Vincent Vatter, and Victor Zamaraev, Letter graphs and geometric grid classes of permutations, SIAM J. Discrete Math. 36 (2022), no. 4, 2774–2797. MR 4508060, DOI 10.1137/21M1449646
- Bogdan Alecu, Mamadou Moustapha Kanté, Vadim Lozin, and Viktor Zamaraev, Lettericity of graphs: an FPT algorithm and a bound on the size of obstructions, arXiv:2402.12559 (2024).
- Bogdan Alecu, Vadim Lozin, Dominique de Werra, and Viktor Zamaraev, Letter graphs and geometric grid classes of permutations: characterization and recognition, Discrete Appl. Math. 283 (2020), 482–494. MR 4114912, DOI 10.1016/j.dam.2020.01.038
- Federico Ardila, Algebraic and geometric methods in enumerative combinatorics, Handbook of enumerative combinatorics, Discrete Math. Appl. (Boca Raton), CRC Press, Boca Raton, FL, 2015, pp. 3–172. MR 3409342
- Frédérique Bassino, Mathilde Bouvel, Adeline Pierrot, Carine Pivoteau, and Dominique Rossin, An algorithm computing combinatorial specifications of permutation classes, Discrete Appl. Math. 224 (2017), 16–44. MR 3637994, DOI 10.1016/j.dam.2017.02.013
- Samuel Braunfeld, Jaroslav Nešetřil, Patrice Ossona de Mendez, and Sebastian Siebertz, On first-order transductions of classes of graphs, arXiv:2208.14412 (2022).
- Robert Brignall and Vincent Vatter, Labelled well-quasi-order for permutation classes, Comb. Theory 2 (2022), no. 3, Paper No. 14, 54. MR 4498595, DOI 10.5070/c62359178
- Kevin Cattell, Michael J. Dinneen, Rodney G. Downey, Michael R. Fellows, and Michael A. Langston, On computing graph minor obstruction sets, Theoret. Comput. Sci. 233 (2000), no. 1-2, 107–127. MR 1732180, DOI 10.1016/S0304-3975(97)00300-9
- Volker Diekert, Combinatorics on traces, Lecture Notes in Computer Science, vol. 454, Springer-Verlag, Berlin, 1990. With a foreword by Wilfried Brauer. MR 1075995, DOI 10.1007/3-540-53031-2
- Cheyne Homberger and Vincent Vatter, On the effective and automatic enumeration of polynomial permutation classes, J. Symbolic Comput. 76 (2016), 84–96. MR 3461260, DOI 10.1016/j.jsc.2015.11.019
- Sophie Huczynska and Nik Ruškuc, Well quasi-order in combinatorics: embeddings and homomorphisms, Surveys in combinatorics 2015, London Math. Soc. Lecture Note Ser., vol. 424, Cambridge Univ. Press, Cambridge, 2015, pp. 261–293. MR 3497273
- Donald E. Knuth, The art of computer programming. Vol. 2: Seminumerical algorithms, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 286318
- Jens Lagergren, An upper bound on the size of an obstruction, Graph structure theory (Seattle, WA, 1991) Contemp. Math., vol. 147, Amer. Math. Soc., Providence, RI, 1993, pp. 601–621. MR 1224734, DOI 10.1090/conm/147/01202
- Michal Opler, Structural and Algorithmic Properties of Permutation Classes, Ph.D. Thesis, Univerzita Karlova, Matematicko-fyzikální fakulta, Prauge, 2022.
- Jay Pantone, The enumeration of permutations avoiding 3124 and 4312, Ann. Comb. 21 (2017), no. 2, 293–315. MR 3654900, DOI 10.1007/s00026-017-0352-2
- Klaus Reinhardt, The complexity of translating logic to finite automata, Automata, logics, and infinite games, Lecture Notes in Comput. Sci., vol. 2500, Springer, Berlin, 2002, pp. 231–238. MR 2070744, DOI 10.1007/3-540-36387-4_{1}3
- Wolfgang Thomas, Languages, automata, and logic, Handbook of formal languages, Vol. 3, Springer, Berlin, 1997, pp. 389–455. MR 1470024
- Szymon Toruńczyk, Lectures on Finite Model Theory, 2020. https://web.archive.org/web/20240814000337/https://duch.mimuw.edu.pl/~szymtor/fmt.pdf.
- Vincent Vatter, Permutation classes, Handbook of enumerative combinatorics, Discrete Math. Appl. (Boca Raton), CRC Press, Boca Raton, FL, 2015, pp. 753–833. MR 3409353
- Mark Weyer, Decidability of S1S and S2S, Automata, logics, and infinite games, Lecture Notes in Comput. Sci., vol. 2500, Springer, Berlin, 2002, pp. 207–230. MR 2070743, DOI 10.1007/3-540-36387-4_{1}2
Bibliographic Information
- Samuel Braunfeld
- Affiliation: Charles University, Computer Science Institute, Malostranské Náměstí 25, 150 00 Prague, Czech Republic; and The Czech Academy of Sciences, Institute of Computer Science, Pod Vodárenskou věží 2, 182 00 Prague, Czech Republic
- MR Author ID: 1197349
- ORCID: 0000-0003-3531-9970
- Email: sbraunfeld@iuuk.mff.cuni.cz
- Received by editor(s): May 13, 2024
- Received by editor(s) in revised form: August 3, 2024, and September 14, 2024
- Published electronically: December 12, 2024
- Additional Notes: This paper is part of a project that had received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810115 - Dynasnet). The author was further supported by Project 21-10775S of the Czech Science Foundation (GAČR)
- Communicated by: Isabella Novik
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 987-1000
- MSC (2020): Primary 05A05, 68R15
- DOI: https://doi.org/10.1090/proc/17083