$L^p$ bound on the strong spherical maximal function
HTML articles powered by AMS MathViewer
- by Juyoung Lee, Sanghyuk Lee and Sewook Oh;
- Proc. Amer. Math. Soc. 153 (2025), 1155-1167
- DOI: https://doi.org/10.1090/proc/17108
- Published electronically: December 17, 2024
- HTML | PDF | Request permission
Abstract:
In this note we show that the strong spherical maximal function in $\mathbb R^d$ is bounded on $L^p$ if $p>2(d+1)/(d-1)$ for $d\ge 3$.References
- Richard J. Bagby, A note on the strong maximal function, Proc. Amer. Math. Soc. 88 (1983), no. 4, 648–650. MR 702293, DOI 10.1090/S0002-9939-1983-0702293-X
- David Beltran, Jonathan Hickman, and Christopher D. Sogge, Variable coefficient Wolff-type inequalities and sharp local smoothing estimates for wave equations on manifolds, Anal. PDE 13 (2020), no. 2, 403–433. MR 4078231, DOI 10.2140/apde.2020.13.403
- J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Analyse Math. 47 (1986), 69–85. MR 874045, DOI 10.1007/BF02792533
- Jean Bourgain and Ciprian Demeter, The proof of the $l^2$ decoupling conjecture, Ann. of Math. (2) 182 (2015), no. 1, 351–389. MR 3374964, DOI 10.4007/annals.2015.182.1.9
- M. Chen, S. Guo, and T. Yang, A multi-parameter cinematic curvature, arXiv:2306.01606, 2023.
- A. Córdoba and R. Fefferman, On differentiation of integrals, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 6, 2211–2213. MR 476977, DOI 10.1073/pnas.74.6.2211
- Norberto Angel Fava, Weak type inequalities for product operators, Studia Math. 42 (1972), 271–288. MR 308364, DOI 10.4064/sm-42-3-271-288
- N. A. Fava, E. A. Gatto, and C. Gutiérrez, On the strong maximal function and Zygmund’s class $L(\textrm {log}^{+}L)^{n}$, Studia Math. 69 (1980/81), no. 2, 155–158. MR 604348, DOI 10.4064/sm-69-2-155-158
- Shaoming Guo, Changkeun Oh, Ruixiang Zhang, and Pavel Zorin-Kranich, Decoupling inequalities for quadratic forms, Duke Math. J. 172 (2023), no. 2, 387–445. MR 4541334, DOI 10.1215/00127094-2022-0033
- Juyoung Lee, Sanghyuk Lee, and Sewook Oh, The elliptic maximal function, J. Funct. Anal. 288 (2025), no. 1, Paper No. 110693, 31. MR 4800578, DOI 10.1016/j.jfa.2024.110693
- J. M. Marstrand, Packing circles in the plane, Proc. London Math. Soc. (3) 55 (1987), no. 1, 37–58. MR 887283, DOI 10.1112/plms/s3-55.1.37
- A. Nagel, E. M. Stein, and S. Wainger, Differentiation in lacunary directions, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 3, 1060–1062. MR 466470, DOI 10.1073/pnas.75.3.1060
- Elias M. Stein, Maximal functions. I. Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), no. 7, 2174–2175. MR 420116, DOI 10.1073/pnas.73.7.2174
- Elias M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.
- Terence Tao, Ana Vargas, and Luis Vega, A bilinear approach to the restriction and Kakeya conjectures, J. Amer. Math. Soc. 11 (1998), no. 4, 967–1000. MR 1625056, DOI 10.1090/S0894-0347-98-00278-1
Bibliographic Information
- Juyoung Lee
- Affiliation: School of Mathematics, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
- MR Author ID: 1461483
- Email: juyounglee@kias.re.kr
- Sanghyuk Lee
- Affiliation: Department of Mathematical Sciences and RIM, Seoul National University, Seoul 08826, Republic of Korea
- MR Author ID: 681594
- Email: shklee@snu.ac.kr
- Sewook Oh
- Affiliation: June E Huh Center for Mathematical Challenges, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
- MR Author ID: 1502205
- Email: sewookoh@kias.re.kr
- Received by editor(s): October 12, 2023
- Received by editor(s) in revised form: September 12, 2024
- Published electronically: December 17, 2024
- Additional Notes: This work was supported by the KIAS individual grant MG098901 (the first author), the National Research Foundation (Republic of Korea) grant no. 2022R1A4A1018904 (the second author), and the KIAS individual grant SP089101 (the third author)
- Communicated by: Dmitriy Bilyk
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 1155-1167
- MSC (2020): Primary 42B25; Secondary 35S30
- DOI: https://doi.org/10.1090/proc/17108