Fractal percolation on statistically self-affine carpets
HTML articles powered by AMS MathViewer
- by Kenneth Falconer and Tianyi Feng;
- Proc. Amer. Math. Soc. 153 (2025), 1121-1134
- DOI: https://doi.org/10.1090/proc/17076
- Published electronically: January 29, 2025
- HTML | PDF | Request permission
Abstract:
We consider a random self-affine carpet $F$ based on an $n\times m$ subdivision of rectangles and a probability $0<p<1$. Starting by dividing $[0,1]^2$ into an $n\times m$ grid of rectangles and selecting these independently with probability $p$, we then divide the selected rectangles into $n\times m$ subrectangles which are again selected with probability $p$; we continue in this way to obtain a statistically self-affine set $F$. We are particularly interested in topological properties of $F$. We show that the critical value of $p$ above which there is a positive probability that $F$ connects the left and right edges of $[0,1]^2$ is the same as the critical value for $F$ to connect the top and bottom edges of $[0,1]^2$. Once this is established we derive various topological properties of $F$ analogous to those known for self-similar carpets.References
- Krishna B. Athreya and Peter E. Ney, Branching processes, Die Grundlehren der mathematischen Wissenschaften, Band 196, Springer-Verlag, New York-Heidelberg, 1972. MR 373040, DOI 10.1007/978-3-642-65371-1
- Julien Barral and De-Jun Feng, Dimensions of random statistically self-affine Sierpinski sponges in $\Bbb R^k$, J. Math. Pures Appl. (9) 149 (2021), 254–303 (English, with English and French summaries). MR 4239002, DOI 10.1016/j.matpur.2021.02.003
- Erik I. Broman and Federico Camia, Universal behavior of connectivity properties in fractal percolation models, Electron. J. Probab. 15 (2010), 1394–1414. MR 2721051, DOI 10.1214/EJP.v15-805
- Erik I. Broman, Federico Camia, Matthijs Joosten, and Ronald Meester, Dimension (in)equalities and Hölder continuous curves in fractal percolation, J. Theoret. Probab. 26 (2013), no. 3, 836–854. MR 3090553, DOI 10.1007/s10959-012-0413-8
- Erik I. Broman, Olof Elias, Filipe Mussini, and Johan Tykesson, The fractal cylinder process: existence and connectivity phase transitions, Ann. Appl. Probab. 31 (2021), no. 5, 2192–2243. MR 4332694, DOI 10.1214/20-aap1644
- Zoltán Buczolich, Esa Järvenpää, Maarit Järvenpää, Tamás Keleti, and Tuomas Pöyhtäri, Fractal percolation is unrectifiable, Adv. Math. 390 (2021), Paper No. 107906, 61. MR 4291467, DOI 10.1016/j.aim.2021.107906
- J. T. Chayes, L. Chayes, and R. Durrett, Connectivity properties of Mandelbrot’s percolation process, Probab. Theory Related Fields 77 (1988), no. 3, 307–324. MR 931500, DOI 10.1007/BF00319291
- F. M. Dekking and R. W. J. Meester, On the structure of Mandelbrot’s percolation process and other random Cantor sets, J. Statist. Phys. 58 (1990), no. 5-6, 1109–1126. MR 1049059, DOI 10.1007/BF01026566
- Henk Don, New methods to bound the critical probability in fractal percolation, Random Structures Algorithms 47 (2015), no. 4, 710–730. MR 3418912, DOI 10.1002/rsa.20566
- Kenneth Falconer, Fractal geometry, 3rd ed., John Wiley & Sons, Ltd., Chichester, 2014. Mathematical foundations and applications. MR 3236784
- K. J. Falconer, Random fractals, Math. Proc. Cambridge Philos. Soc. 100 (1986), no. 3, 559–582. MR 857731, DOI 10.1017/S0305004100066299
- Jonathan M. Fraser, Jun Jie Miao, and Sascha Troscheit, The Assouad dimension of randomly generated fractals, Ergodic Theory Dynam. Systems 38 (2018), no. 3, 982–1011. MR 3784251, DOI 10.1017/etds.2016.64
- Geoffrey Grimmett, Percolation, Springer-Verlag, New York, 1989. MR 995460, DOI 10.1007/978-1-4757-4208-4
- Steven P. Lalley and Dimitrios Gatzouras, Hausdorff and box dimensions of certain self-affine fractals, Indiana Univ. Math. J. 41 (1992), no. 2, 533–568. MR 1183358, DOI 10.1512/iumj.1992.41.41031
- B. B. Mandelbrot, Intermittent turbulence in self-similar cascades, divergence of high moments and dimension of the carrier, Journal of Fluid Mechanics 62 (1974), 331–358.
- Benoit B. Mandelbrot, The fractal geometry of nature, Schriftenreihe fĂĽr den Referenten. [Series for the Referee], W. H. Freeman and Co., San Francisco, CA, 1982. MR 665254
- Ronald W. J. Meester, Connectivity in fractal percolation, J. Theoret. Probab. 5 (1992), no. 4, 775–789. MR 1182680, DOI 10.1007/BF01058729
- R. Daniel Mauldin and S. C. Williams, Random recursive constructions: asymptotic geometric and topological properties, Trans. Amer. Math. Soc. 295 (1986), no. 1, 325–346. MR 831202, DOI 10.1090/S0002-9947-1986-0831202-5
- Garth H. M. Thomas, Book Review: Elements of the Topology of Plane Sets of Points by M. H. A. Newman, Math. Mag. 27 (1953), no. 1, 48–49. MR 1570644, DOI 10.2307/3029405
- Sascha Troscheit, On the dimensions of attractors of random self-similar graph directed iterated function systems, J. Fractal Geom. 4 (2017), no. 3, 257–303. MR 3732642, DOI 10.4171/JFG/51
- Sascha Troscheit, The box-counting dimension of random box-like self-affine sets, Indiana Univ. Math. J. 67 (2018), no. 2, 495–535. MR 3798848, DOI 10.1512/iumj.2018.67.7295
- Damien G. White, On the value of the critical point in fractal percolation, Random Structures Algorithms 18 (2001), no. 4, 332–345. MR 1839496, DOI 10.1002/rsa.1012
Bibliographic Information
- Kenneth Falconer
- Affiliation: Mathematical Institute, University of St Andrews, St Andrews, Fife, KY16 9SS, United Kingdom
- MR Author ID: 65025
- ORCID: 0000-0001-8823-0406
- Email: kjf@st-andrews.ac.uk
- Tianyi Feng
- Affiliation: Mathematical Institute, University of St Andrews, St Andrews, Fife, KY16 9SS, United Kingdom
- ORCID: 0009-0001-9636-5041
- Email: tf66@st-andrews.ac.uk
- Received by editor(s): March 2, 2024
- Received by editor(s) in revised form: August 22, 2024, and August 29, 2024
- Published electronically: January 29, 2025
- Communicated by: Katrin Gelfert
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 1121-1134
- MSC (2020): Primary 28A80, 60G18
- DOI: https://doi.org/10.1090/proc/17076