Twisted Jacquet modules: A conjecture of D. Prasad
HTML articles powered by AMS MathViewer
- by Santosh Nadimpalli and Mihir Sheth;
- Proc. Amer. Math. Soc. 153 (2025), 1349-1361
- DOI: https://doi.org/10.1090/proc/17086
- Published electronically: January 21, 2025
- HTML | PDF | Request permission
Abstract:
In this note, we study the twisted Jacquet modules of subquotients of principal series representations of $\mathrm {GL}_2(D)$ where $D$ is a division algebra over a non-archimedean local field $F$. We begin with a proof of a conjecture of D. Prasad on twisted Jacquet modules of Speh representations of $\mathrm { GL}_2(D)$ when $D$ is the quaternionic division algebra. For arbitrary division algebras $D$ over $F$, we focus on depth-zero principal series. We compute the dimensions of twisted Jacquet modules of generalized Speh representations and explicitly investigate their structure as $D^{\times }$-representations in the depth-zero situation.References
- I. N. Bernšteĭn and A. V. Zelevinskiĭ, Representations of the group $GL(n,F),$ where $F$ is a local non-Archimedean field, Uspehi Mat. Nauk 31 (1976), no. 3(189), 5–70 (Russian). MR 425030
- Yuanqing Cai, Quaternionic Speh representations, Doc. Math. 28 (2023), no. 4, 903–937. MR 4705603, DOI 10.4171/dm/928
- Wee Teck Gan and Shuichiro Takeda, On Shalika periods and a theorem of Jacquet-Martin, Amer. J. Math. 132 (2010), no. 2, 475–528. MR 2654780, DOI 10.1353/ajm.0.0109
- Paul Garrett, Representations of $GL_2$ and $SL_2$ over finite fields, https://www-users.cse.umn.edu/~garrett/m/repns/notes_2014-15/04_finite_GL2.pdf.
- Henniart Guy and Vignéras Marie-France, Representations of $GL_n(D)$ near the identity, arXiv:2305.06581, 2023.
- Alberto Mínguez and Vincent Sécherre, Représentations lisses modulo $\ell$ de $\mathrm {GL}_m({D})$, Duke Math. J. 163 (2014), no. 4, 795–887 (French, with English and French summaries). MR 3178433, DOI 10.1215/00127094-2430025
- C. Mœglin and J.-L. Waldspurger, Modèles de Whittaker dégénérés pour des groupes $p$-adiques, Math. Z. 196 (1987), no. 3, 427–452 (French). MR 913667, DOI 10.1007/BF01200363
- Santosh Nadimpalli and Mihir Sheth, On the integrality of locally algebraic representations of $\textrm {GL}_{2}(D)$, J. Number Theory 257 (2024), 124–145. MR 4672189, DOI 10.1016/j.jnt.2023.10.006
- Dipendra Prasad, Comparison of germ expansion on inner forms of $\textrm {GL}(n)$, Manuscripta Math. 102 (2000), no. 2, 263–268. MR 1771944, DOI 10.1007/s002291020263
- Dipendra Prasad, The space of degenerate Whittaker models for $\textrm {GL}(4)$ over $p$-adic fields, Cohomology of arithmetic groups, $L$-functions and automorphic forms (Mumbai, 1998/1999) Tata Inst. Fund. Res. Stud. Math., vol. 15, Tata Inst. Fund. Res., Bombay, 2001, pp. 103–115. MR 1986097
- Dipendra Prasad and A. Raghuram, Kirillov theory for $\textrm {GL}_2(\scr D)$ where $\scr D$ is a division algebra over a non-Archimedean local field, Duke Math. J. 104 (2000), no. 1, 19–44. MR 1769724, DOI 10.1215/S0012-7094-00-10412-7
- Allan J. Silberger and Ernst-Wilhelm Zink, An explicit matching theorem for level zero discrete series of unit groups of $\mathfrak {p}$-adic simple algebras, J. Reine Angew. Math. 585 (2005), 173–235. MR 2164626, DOI 10.1515/crll.2005.2005.585.173
- Marko Tadić, Induced representations of $\textrm {GL}(n,A)$ for $p$-adic division algebras $A$, J. Reine Angew. Math. 405 (1990), 48–77. MR 1040995, DOI 10.1515/crll.1990.405.48
- A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210. MR 584084, DOI 10.24033/asens.1379
Bibliographic Information
- Santosh Nadimpalli
- Affiliation: Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur 208016, India
- MR Author ID: 1183126
- ORCID: 0000-0002-2637-6159
- Email: nsantosh@iitk.ac.in
- Mihir Sheth
- Affiliation: Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
- MR Author ID: 1400783
- ORCID: 0000-0002-8301-6088
- Email: mihirsheth@iisc.ac.in
- Received by editor(s): June 22, 2024
- Received by editor(s) in revised form: September 9, 2024, and September 22, 2024
- Published electronically: January 21, 2025
- Additional Notes: The authors were supported by the DST-INSPIRE Research Grant IFA-19-MA-138 and IFA-22-MA-179.
- Communicated by: David Savitt
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 1349-1361
- MSC (2020): Primary 22E50; Secondary 11F70
- DOI: https://doi.org/10.1090/proc/17086