Non-existence of phantoms on some non-generic blowups of the projective plane
HTML articles powered by AMS MathViewer
- by Lev Borisov and Kimoi Kemboi;
- Proc. Amer. Math. Soc. 153 (2025), 963-968
- DOI: https://doi.org/10.1090/proc/17105
- Published electronically: January 29, 2025
- HTML | PDF | Request permission
Abstract:
We show that blowups of the projective plane at points lying on a smooth cubic curve do not contain phantoms, provided the points are chosen in very general position on this curve.References
- Nicolas Addington, New derived symmetries of some hyperkähler varieties, Algebr. Geom. 3 (2016), no. 2, 223–260. MR 3477955, DOI 10.14231/AG-2016-011
- Rina Anno and Timothy Logvinenko, Spherical DG-functors, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 9, 2577–2656. MR 3692883, DOI 10.4171/JEMS/724
- Igor Burban and Bernd Kreußler, Derived categories of irreducible projective curves of arithmetic genus one, Compos. Math. 142 (2006), no. 5, 1231–1262. MR 2264663, DOI 10.1112/S0010437X06002090
- Christian Böhning, Hans-Christian Graf von Bothmer, Ludmil Katzarkov, and Pawel Sosna, Determinantal Barlow surfaces and phantom categories, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 7, 1569–1592. MR 3361723, DOI 10.4171/JEMS/539
- Christian Böhning, Hans-Christian Graf von Bothmer, and Pawel Sosna, On the derived category of the classical Godeaux surface, Adv. Math. 243 (2013), 203–231. MR 3062745, DOI 10.1016/j.aim.2013.04.017
- C. Diemer, L. Katzarkov, and G. Kerr, Compactifications of spaces of Landau-Ginzburg models, Izv. Ross. Akad. Nauk Ser. Mat. 77 (2013), no. 3, 55–76; English transl., Izv. Math. 77 (2013), no. 3, 487–508. MR 3098787, DOI 10.4213/im8019
- Alexander Efimov, Wall finiteness obstruction for dg categories and for algebras over colored dg operads, Talk Slides (2020).
- Sergey Gorchinskiy and Dmitri Orlov, Geometric phantom categories, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 329–349. MR 3090263, DOI 10.1007/s10240-013-0050-5
- Lutz Hille and Michel Van den Bergh, Fourier-Mukai transforms, Handbook of tilting theory, London Math. Soc. Lecture Note Ser., vol. 332, Cambridge Univ. Press, Cambridge, 2007, pp. 147–177. MR 2384610, DOI 10.1017/CBO9780511735134.007
- Johannes Krah, A phantom on a rational surface, Invent. Math. 235 (2024), no. 3, 1009–1018. MR 4701883, DOI 10.1007/s00222-023-01234-0
- Alexander Kuznetsov, Base change for semiorthogonal decompositions, Compos. Math. 147 (2011), no. 3, 852–876. MR 2801403, DOI 10.1112/S0010437X10005166
- Alexander Kuznetsov, Semiorthogonal decompositions in algebraic geometry, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, 2014, pp. 635–660. MR 3728631
- Dmitrii Pirozhkov, Admissible subcategories of del Pezzo surfaces, Adv. Math. 424 (2023), Paper No. 109046, 62. MR 4581971, DOI 10.1016/j.aim.2023.109046
- Paul Seidel and Richard Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001), no. 1, 37–108. MR 1831820, DOI 10.1215/S0012-7094-01-10812-0
- Bertrand Toën, The homotopy theory of $dg$-categories and derived Morita theory, Invent. Math. 167 (2007), no. 3, 615–667. MR 2276263, DOI 10.1007/s00222-006-0025-y
Bibliographic Information
- Lev Borisov
- Affiliation: Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854-8019
- MR Author ID: 323731
- Kimoi Kemboi
- Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544-1000
- Received by editor(s): August 5, 2024
- Received by editor(s) in revised form: September 5, 2024
- Published electronically: January 29, 2025
- Communicated by: Gregory G. Smith
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 963-968
- MSC (2020): Primary 14F08
- DOI: https://doi.org/10.1090/proc/17105