Rogers-Ramanujan type identities and Chebyshev polynomials
HTML articles powered by AMS MathViewer
- by Olivia X. M. Yao;
- Proc. Amer. Math. Soc. 153 (2025), 1215-1229
- DOI: https://doi.org/10.1090/proc/17107
- Published electronically: February 3, 2025
- HTML | PDF | Request permission
Abstract:
Recently, Andrews [Ann. Comb. 23 (2019), pp. 443–464] discovered a family of Rogers-Ramanujan type identities by introducing Chebyshev polynomials of the third and the fourth kinds into Bailey pairs. Motivated by Andrews’ work, Sun [Ramanujan J. 60 (2023), pp. 761–794] obtained a companion identity for Dyson’s favorite identity and a number of Rogers-Ramanujan type identities based on a new Bailey pair involving Chebyshev polynomials of the third kind. In this paper, we establish many new identities involving Chebyshev polynomials of the second kind by constructing several new Bailey pairs and inserting them into various weak forms of Bailey’s lemma. Some special cases of those identities yield many new and known Rogers-Ramanujan type identities. In particular, we derive several identities which are analogous to Dyson’s favorite identity. It is interesting that the right hand sides of some identities are sums of modular forms with different weights.References
- George E. Andrews, $q$-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra, CBMS Regional Conference Series in Mathematics, vol. 66, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR 858826, DOI 10.1090/cbms/066
- George E. Andrews, $q$-orthogonal polynomials, Rogers-Ramanujan identities, and mock theta functions, Tr. Mat. Inst. Steklova 276 (2012), no. Teoriya Chisel, Algebra i Analiz, 27–38; English transl., Proc. Steklov Inst. Math. 276 (2012), no. 1, 21–32. MR 2986107, DOI 10.1134/S0081543812010038
- George E. Andrews, Dyson’s “favorite” identity and Chebyshev polynomials of the third and fourth kind, Ann. Comb. 23 (2019), no. 3-4, 443–464. MR 4039544, DOI 10.1007/s00026-019-00443-w
- George E. Andrews and Bruce C. Berndt, Ramanujan’s lost notebook. Part II, Springer, New York, 2009. MR 2474043
- George E. Andrews, Anne Schilling, and S. Ole Warnaar, An $A_2$ Bailey lemma and Rogers-Ramanujan-type identities, J. Amer. Math. Soc. 12 (1999), no. 3, 677–702. MR 1669957, DOI 10.1090/S0894-0347-99-00297-0
- W. N. Bailey, Identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 50 (1948), 1–10. MR 25025, DOI 10.1112/plms/s2-50.1.1
- Bruce C. Berndt, Ramanujan’s notebooks. Part III, Springer-Verlag, New York, 1991. MR 1117903, DOI 10.1007/978-1-4612-0965-2
- Bruce C. Berndt, Number theory in the spirit of Ramanujan, Student Mathematical Library, vol. 34, American Mathematical Society, Providence, RI, 2006. MR 2246314, DOI 10.1090/stml/034
- Zhineng Cao and Liuquan Wang, Multi-sum Rogers-Ramanujan type identities, J. Math. Anal. Appl. 522 (2023), no. 2, Paper No. 126960, 24. MR 4530918, DOI 10.1016/j.jmaa.2022.126960
- Freeman J. Dyson, A walk through Ramanujan’s garden, Ramanujan revisited (Urbana-Champaign, Ill., 1987) Academic Press, Boston, MA, 1988, pp. 7–28. MR 938957
- Kristina Garrett, Mourad E. H. Ismail, and Dennis Stanton, Variants of the Rogers-Ramanujan identities, Adv. in Appl. Math. 23 (1999), no. 3, 274–299. MR 1722235, DOI 10.1006/aama.1999.0658
- George Gasper and Mizan Rahman, Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 96, Cambridge University Press, Cambridge, 2004. With a foreword by Richard Askey. MR 2128719, DOI 10.1017/CBO9780511526251
- Nancy S. S. Gu and Helmut Prodinger, One-parameter generalizations of Rogers-Ramanujan type identities, Adv. in Appl. Math. 45 (2010), no. 2, 149–196. MR 2646121, DOI 10.1016/j.aam.2010.01.002
- M. E. H. Ismail and D. Stanton, Tribasic integrals and identities of Rogers-Ramanujan type, Trans. Amer. Math. Soc. 355 (2003), no. 10, 4061–4091. MR 1990575, DOI 10.1090/S0002-9947-03-03338-5
- Mourad E. H. Ismail and Ruiming Zhang, $q$-Bessel functions and Rogers-Ramanujan type identities, Proc. Amer. Math. Soc. 146 (2018), no. 9, 3633–3646. MR 3825821, DOI 10.1090/proc/13078
- Jeremy Lovejoy, A Bailey lattice, Proc. Amer. Math. Soc. 132 (2004), no. 5, 1507–1516. MR 2053359, DOI 10.1090/S0002-9939-03-07247-2
- Jeremy Lovejoy, Bailey pairs and indefinite quadratic forms, J. Math. Anal. Appl. 410 (2014), no. 2, 1002–1013. MR 3111885, DOI 10.1016/j.jmaa.2013.09.009
- Jeremy Lovejoy, Bailey pairs and indefinite quadratic forms, II. False indefinite theta functions, Res. Number Theory 8 (2022), no. 2, Paper No. 24, 16. MR 4399328, DOI 10.1007/s40993-022-00324-x
- J. H. Loxton, Special values of the dilogarithm function, Acta Arith. 43 (1984), no. 2, 155–166. MR 736728, DOI 10.4064/aa-43-2-155-166
- J. C. Mason, Chebyshev polynomials of the second, third and fourth kinds in approximation, indefinite integration, and integral transforms, Proceedings of the Seventh Spanish Symposium on Orthogonal Polynomials and Applications (VII SPOA) (Granada, 1991), 1993, pp. 169–178. MR 1256024, DOI 10.1016/0377-0427(93)90148-5
- James McLaughlin and Andrew V. Sills, Ramanujan-Slater type identities related to the moduli 18 and 24, J. Math. Anal. Appl. 344 (2008), no. 2, 765–777. MR 2426307, DOI 10.1016/j.jmaa.2008.03.033
- James Mc Laughlin, Andrew V. Sills, and Peter Zimmer, Rogers-Ramanujan-Slater type identities, Electron. J. Combin. DS15 (2008), no. Dynamic Surveys, 59. MR 4336217
- James McLaughlin, Andrew V. Sills, and Peter Zimmer, Rogers-Ramanujan computer searches, J. Symbolic Comput. 44 (2009), no. 8, 1068–1078. MR 2523768, DOI 10.1016/j.jsc.2009.02.003
- L. J. Rogers, Second Memoir on the Expansion of certain Infinite Products, Proc. Lond. Math. Soc. 25 (1893/94), 318–343. MR 1576348, DOI 10.1112/plms/s1-25.1.318
- Michael J. Schlosser, Bilateral identities of the Rogers-Ramanujan type, Trans. Amer. Math. Soc. Ser. B 10 (2023), 1119–1140. MR 4632568, DOI 10.1090/btran/158
- I. Schur, Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbrüche, Sitzungsberichte der Berliner Akademie, 1917, pp. 302–321.
- L. J. Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 54 (1952), 147–167. MR 49225, DOI 10.1112/plms/s2-54.2.147
- Andrew V. Sills, On identities of the Rogers-Ramanujan type, Ramanujan J. 11 (2006), no. 3, 403–429. MR 2249505, DOI 10.1007/s11139-006-8483-9
- Andrew V. Sills, Identities of the Rogers-Ramanujan-Slater type, Int. J. Number Theory 3 (2007), no. 2, 293–323. MR 2333622, DOI 10.1142/S1793042107000912
- Andrew V. Sills, An invitation to the Rogers-Ramanujan identities, CRC Press, Boca Raton, FL, 2018. With a foreword by George E. Andrews. MR 3752624
- Lisa H. Sun, Rogers-Ramanujan type identities and Chebyshev polynomials of the third kind, Ramanujan J. 60 (2023), no. 3, 761–794. MR 4552660, DOI 10.1007/s11139-022-00627-8
- Liuquan Wang, New proofs of some double sum Rogers-Ramanujan type identities, Ramanujan J. 62 (2023), no. 1, 251–272. MR 4632217, DOI 10.1007/s11139-022-00654-5
Bibliographic Information
- Olivia X. M. Yao
- Affiliation: School of Mathematical Sciences, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, People’s Republic of China
- MR Author ID: 951639
- Email: yaoxiangmei@163.com
- Received by editor(s): September 16, 2023
- Received by editor(s) in revised form: October 16, 2024
- Published electronically: February 3, 2025
- Additional Notes: This work was supported by the Natural Science Foundation of Jiangsu Province of China (no. BK20221383).
- Communicated by: Mourad Ismail
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 1215-1229
- MSC (2020): Primary 33D15, 11P84; Secondary 05A19
- DOI: https://doi.org/10.1090/proc/17107