Partition identities from higher level crystals of $A_1^{(1)}$
HTML articles powered by AMS MathViewer
- by Jehanne Dousse, Leonard Hardiman and Isaac Konan;
- Proc. Amer. Math. Soc. 153 (2025), 1363-1382
- DOI: https://doi.org/10.1090/proc/16417
- Published electronically: February 5, 2025
- HTML | PDF | Request permission
Abstract:
We study perfect crystals for the standard modules of the affine Lie algebra $A_1^{(1)}$ at all levels using the theory of multi-grounded partitions. We prove a family of partition identities which are reminiscent of the Andrews–Gordon identities and companions to the Meurman–Primc identities, but with simple difference conditions involving absolute values.References
- Krishnaswami Alladi, George Andrews, and Basil Gordon, Refinements and generalizations of Capparelli’s conjecture on partitions, J. Algebra 174 (1995), no. 2, 636–658. MR 1334229, DOI 10.1006/jabr.1995.1144
- George E. Andrews, An analytic generalization of the Rogers-Ramanujan identities for odd moduli, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 4082–4085. MR 351985, DOI 10.1073/pnas.71.10.4082
- George E. Andrews, On the proofs of the Rogers-Ramanujan identities, $q$-series and partitions (Minneapolis, MN, 1988) IMA Vol. Math. Appl., vol. 18, Springer, New York, 1989, pp. 1–14. MR 1019838, DOI 10.1007/978-1-4684-0637-5_{1}
- David M. Bressoud, A generalization of the Rogers-Ramanujan identities for all moduli, J. Combin. Theory Ser. A 27 (1979), no. 1, 64–68. MR 541344, DOI 10.1016/0097-3165(79)90008-6
- D. M. Bressoud, An easy proof of the Rogers-Ramanujan identities, J. Number Theory 16 (1983), no. 2, 235–241. MR 698167, DOI 10.1016/0022-314X(83)90043-4
- Stefano Capparelli, On some representations of twisted affine Lie algebras and combinatorial identities, J. Algebra 154 (1993), no. 2, 335–355. MR 1206124, DOI 10.1006/jabr.1993.1017
- Sylvie Corteel, Rogers-Ramanujan identities and the Robinson-Schensted-Knuth correspondence, Proc. Amer. Math. Soc. 145 (2017), no. 5, 2011–2022. MR 3611316, DOI 10.1090/proc/13373
- J. Dousse and I. Konan, Generalisations of Capparelli’s and Primc’s identities, II: Perfect $A_{n-1}^{(1)}$ crystals and explicit character formulas, arXiv:1911.13189, 2019.
- Jehanne Dousse and Isaac Konan, Generalisations of Capparelli’s and Primc’s identities, I: Coloured Frobenius partitions and combinatorial proofs. part B, Adv. Math. 408 (2022), no. part B, Paper No. 108571, 70. MR 4460276, DOI 10.1016/j.aim.2022.108571
- Jehanne Dousse and Isaac Konan, Multi-grounded partitions and character formulas, Adv. Math. 400 (2022), Paper No. 108275, 41. MR 4387239, DOI 10.1016/j.aim.2022.108275
- Jehanne Dousse and Jeremy Lovejoy, Generalizations of Capparelli’s identity, Bull. Lond. Math. Soc. 51 (2019), no. 2, 193–206. MR 3937581, DOI 10.1112/blms.12218
- Jehanne Dousse, On partition identities of Capparelli and Primc, Adv. Math. 370 (2020), 107245, 22. MR 4104823, DOI 10.1016/j.aim.2020.107245
- A. M. Garsia and S. C. Milne, A Rogers-Ramanujan bijection, J. Combin. Theory Ser. A 31 (1981), no. 3, 289–339. MR 635372, DOI 10.1016/0097-3165(81)90062-5
- Basil Gordon, A combinatorial generalization of the Rogers-Ramanujan identities, Amer. J. Math. 83 (1961), 393–399. MR 123484, DOI 10.2307/2372962
- Michael J. Griffin, Ken Ono, and S. Ole Warnaar, A framework of Rogers-Ramanujan identities and their arithmetic properties, Duke Math. J. 165 (2016), no. 8, 1475–1527. MR 3504177, DOI 10.1215/00127094-3449994
- Jin Hong and Seok-Jin Kang, Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, vol. 42, American Mathematical Society, Providence, RI, 2002. MR 1881971, DOI 10.1090/gsm/042
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- M. Kashiwara, On crystal bases of the $Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516. MR 1115118, DOI 10.1215/S0012-7094-91-06321-0
- S. Kang, M. Kashiwara, K. Misra, T. Miwa, T. Nakashima, and A. Nakayashiki, Affine crystals and vertex models, Int. Journ. Mod. Phys. A, 7, 04 1992, 449–484.
- Seok-Jin Kang, Masaki Kashiwara, Kailash C. Misra, Tetsuji Miwa, Toshiki Nakashima, and Atsushi Nakayashiki, Affine crystals and vertex models, Infinite analysis, Part A, B (Kyoto, 1991) Adv. Ser. Math. Phys., vol. 16, World Sci. Publ., River Edge, NJ, 1992, pp. 449–484. MR 1187560, DOI 10.1142/s0217751x92003896
- Victor G. Kac and Dale H. Peterson, Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. in Math. 53 (1984), no. 2, 125–264. MR 750341, DOI 10.1016/0001-8708(84)90032-X
- J. Lepowsky and S. Milne, Lie algebraic approaches to classical partition identities, Adv. in Math. 29 (1978), no. 1, 15–59. MR 501091, DOI 10.1016/0001-8708(78)90004-X
- James Lepowsky and Robert Lee Wilson, The structure of standard modules. I. Universal algebras and the Rogers-Ramanujan identities, Invent. Math. 77 (1984), no. 2, 199–290. MR 752821, DOI 10.1007/BF01388447
- James Lepowsky and Robert Lee Wilson, The structure of standard modules. II. The case $A^{(1)}_1$, principal gradation, Invent. Math. 79 (1985), no. 3, 417–442. MR 782227, DOI 10.1007/BF01388515
- A. Meurman and M. Primc, Annihilating ideals of standard modules of $\textrm {sl}(2,\textbf {C})^\sim$ and combinatorial identities, Adv. in Math. 64 (1987), no. 3, 177–240. MR 888628, DOI 10.1016/0001-8708(87)90008-9
- Arne Meurman and Mirko Primc, Annihilating fields of standard modules of ${\mathfrak {s}}{\mathfrak {l}}(2,\textbf {C})^\sim$ and combinatorial identities, Mem. Amer. Math. Soc. 137 (1999), no. 652, viii+89. MR 1458529, DOI 10.1090/memo/0652
- Arne Meurman and Mirko Primc, A basis of the basic $\mathfrak {s}\mathfrak {l}(3,\Bbb C)^\sim$-module, Commun. Contemp. Math. 3 (2001), no. 4, 593–614. MR 1869106, DOI 10.1142/S0219199701000512
- Debajyoti Nandi, Partition identities arising from the standard A2 (2)-modules of level 4, ProQuest LLC, Ann Arbor, MI, 2014. Thesis (Ph.D.)–Rutgers The State University of New Jersey - New Brunswick. MR 3322104
- M. Primc, Vertex operator construction of standard modules for $A^{(1)}_n$, Pacific J. Math. 162 (1994), no. 1, 143–187. MR 1247147, DOI 10.2140/pjm.1994.162.143
- Mirko Primc, Some crystal Rogers-Ramanujan type identities, Glas. Mat. Ser. III 34(54) (1999), no. 1, 73–86. MR 1703736
- Mirko Primc and Tomislav Šikić, Combinatorial bases of basic modules for affine Lie algebras $C_n^{(1)}$, J. Math. Phys. 57 (2016), no. 9, 091701, 19. MR 3547572, DOI 10.1063/1.4962392
- L. J. Rogers and S. Ramanujan, Proof of certain identities in combinatory analysis, Math. Proc. Cambridge Philos. Soc. 19 (1919), 211–216.
- Ivica Siladić, Twisted $\mathfrak {sl}(3,\Bbb C)\sptilde$-modules and combinatorial identities, Glas. Mat. Ser. III 52(72) (2017), no. 1, 53–77. MR 3662603, DOI 10.3336/gm.52.1.05
- Minoru Wakimoto, Lectures on infinite-dimensional Lie algebra, World Scientific Publishing Co., Inc., River Edge, NJ, 2001. MR 1873994, DOI 10.1142/9789812810700
Bibliographic Information
- Jehanne Dousse
- Affiliation: Université de Genève, Section de Mathématiques, 7-9 rue du Conseil-Général, CH-1205 Genève, Switzerland
- MR Author ID: 1036858
- ORCID: 0000-0001-6825-0389
- Email: jehanne.dousse@unige.ch
- Leonard Hardiman
- Affiliation: Chair of Statistical Field Theory, Institute of Mathematics, EPFL, Station 8, CH-1015 Lausanne, Switzerland
- MR Author ID: 1377544
- ORCID: 0000-0003-1986-6704
- Email: leonard.hardiman@epfl.ch
- Isaac Konan
- Affiliation: Université Claude Bernard Lyon 1, UMR5208, Institut Camille Jordan, F-69622 Villeurbanne, France
- MR Author ID: 1320290
- ORCID: 0000-0002-6717-5118
- Email: konan@math.univ-lyon1.fr
- Received by editor(s): December 2, 2021
- Received by editor(s) in revised form: October 26, 2022, December 13, 2022, and January 6, 2023
- Published electronically: February 5, 2025
- Additional Notes: All three authors were partially supported by the project IMPULSION of IDEXLYON. The first author was funded by the ANR COMBINé ANR-19-CE48-0011 and the SNSF Eccellenza grant number PCEFP2 202784. The third author was funded by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program“Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).
- Communicated by: Amanda Folsom
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 1363-1382
- MSC (2020): Primary 05A15, 05A17, 05A30, 05E10, 11P81, 11P84, 17B10, 17B65, 17B67
- DOI: https://doi.org/10.1090/proc/16417