On the strong maximum principle for fully nonlinear parabolic equations of second order
HTML articles powered by AMS MathViewer
- by Alessandro Goffi;
- Proc. Amer. Math. Soc. 153 (2025), 1575-1583
- DOI: https://doi.org/10.1090/proc/17050
- Published electronically: February 18, 2025
- HTML | PDF | Request permission
Abstract:
We provide a proof of strong maximum and minimum principles for fully nonlinear uniformly parabolic equations of second order. The approach is of parabolic nature and does not exploit the parabolic Harnack inequality.References
- Matthieu Alfaro and Isabeau Birindelli, Evolution equations involving nonlinear truncated Laplacian operators, Discrete Contin. Dyn. Syst. 40 (2020), no. 6, 3057–3073. MR 4097491, DOI 10.3934/dcds.2020046
- Martino Bardi and Francesca Da Lio, On the strong maximum principle for fully nonlinear degenerate elliptic equations, Arch. Math. (Basel) 73 (1999), no. 4, 276–285. MR 1710100, DOI 10.1007/s000130050399
- Martino Bardi and Alessandro Goffi, New strong maximum and comparison principles for fully nonlinear degenerate elliptic PDEs, Calc. Var. Partial Differential Equations 58 (2019), no. 6, Paper No. 184, 20. MR 4018316, DOI 10.1007/s00526-019-1620-2
- Luis A. Caffarelli and Xavier Cabré, Fully nonlinear elliptic equations, American Mathematical Society Colloquium Publications, vol. 43, American Mathematical Society, Providence, RI, 1995. MR 1351007, DOI 10.1090/coll/043
- Luis Caffarelli, Yanyan Li, and Louis Nirenberg, Some remarks on singular solutions of nonlinear elliptic equations III: viscosity solutions including parabolic operators, Comm. Pure Appl. Math. 66 (2013), no. 1, 109–143. MR 2994551, DOI 10.1002/cpa.21412
- E. Calabi, An extension of E. Hopf’s maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1958), 45–56. MR 92069, DOI 10.1215/S0012-7094-58-02505-5
- Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 1–67. MR 1118699, DOI 10.1090/S0273-0979-1992-00266-5
- Francesca Da Lio, Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations, Commun. Pure Appl. Anal. 3 (2004), no. 3, 395–415. MR 2098291, DOI 10.3934/cpaa.2004.3.395
- Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1964. MR 181836
- Alessandro Goffi and Francesco Pediconi, A note on the strong maximum principle for fully nonlinear equations on Riemannian manifolds, J. Geom. Anal. 31 (2021), no. 8, 8641–8665. MR 4293943, DOI 10.1007/s12220-021-00607-2
- F. Reese Harvey and H. Blaine Lawson Jr., Characterizing the strong maximum principle for constant coefficient subequations, Rend. Mat. Appl. (7) 37 (2016), no. 1-2, 63–104. MR 3622305
- A. M. Il′in, A. S. Kalashnikov, and O. A. Oleĭnik, Second-order linear equations of parabolic type, Tr. Semin. im. I. G. Petrovskogo 21 (2001), 9–193, 341 (Russian, with Russian summary); English transl., J. Math. Sci. (New York) 108 (2002), no. 4, 435–542. MR 1875963, DOI 10.1023/A:1013156322602
- Cyril Imbert and Luis Silvestre, An introduction to fully nonlinear parabolic equations, An introduction to the Kähler-Ricci flow, Lecture Notes in Math., vol. 2086, Springer, Cham, 2013, pp. 7–88. MR 3185332, DOI 10.1007/978-3-319-00819-6_{2}
- Jay Kovats, A three-curves theorem for viscosity subsolutions of parabolic equations, Proc. Amer. Math. Soc. 131 (2003), no. 5, 1509–1514. MR 1949881, DOI 10.1090/S0002-9939-02-06664-9
- E. M. Landis, Second order equations of elliptic and parabolic type, Translations of Mathematical Monographs, vol. 171, American Mathematical Society, Providence, RI, 1998. Translated from the 1971 Russian original by Tamara Rozhkovskaya; With a preface by Nina Ural′tseva. MR 1487894, DOI 10.1090/mmono/171
- Gary M. Lieberman, Second order parabolic differential equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. MR 1465184, DOI 10.1142/3302
- Louis Nirenberg, A strong maximum principle for parabolic equations, Comm. Pure Appl. Math. 6 (1953), 167–177. MR 55544, DOI 10.1002/cpa.3160060202
- Patrizia Pucci and James Serrin, The maximum principle, Progress in Nonlinear Differential Equations and their Applications, vol. 73, Birkhäuser Verlag, Basel, 2007. MR 2356201, DOI 10.1007/978-3-7643-8145-5
Bibliographic Information
- Alessandro Goffi
- Affiliation: Dipartimento di Matematica “Tullio Levi-Civita”, Università degli Studi di Padova, Via Trieste 63, 35121 Padova, Italy
- MR Author ID: 1315470
- ORCID: 0000-0002-3581-5838
- Email: alessandro.goffi@unipd.it
- Received by editor(s): December 4, 2023
- Received by editor(s) in revised form: August 18, 2024
- Published electronically: February 18, 2025
- Additional Notes: The author is member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). He was partially supported by the INdAM-GNAMPA Projects 2023 and 2024, by the King Abdullah University of Science and Technology (KAUST) project CRG2021-4674 “Mean-Field Games: models, theory and computational aspects” and by the project funded by the EuropeanUnion - NextGenerationEU under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.1 - Call PRIN 2022 No. 104 of February 2, 2022 of Italian Ministry of University and Research; Project 2022W58BJ5 (subject area: PE - Physical Sciences and Engineering) “PDEs and optimal control methods in mean field games, population dynamics and multi-agent models”.
- Communicated by: Ryan Hynd
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 1575-1583
- MSC (2020): Primary 35B50, 35D40, 35K10
- DOI: https://doi.org/10.1090/proc/17050