The $RO(C_{2^n})$-graded homotopy of $H\underline {\mathbb {F}_2}$
HTML articles powered by AMS MathViewer
- by Guoqi Yan;
- Proc. Amer. Math. Soc. 153 (2025), 1803-1816
- DOI: https://doi.org/10.1090/proc/17057
- Published electronically: February 7, 2025
- HTML | PDF | Request permission
Abstract:
We give explicit formulas for the $RO(C_{2^n})$-graded homotopy of the Eilenberg-Mac Lane spectrum $H\underline {\mathbb {F}_2}$.References
- J. Michael Boardman, Conditionally convergent spectral sequences, Homotopy invariant algebraic structures (Baltimore, MD, 1998) Contemp. Math., vol. 239, Amer. Math. Soc., Providence, RI, 1999, pp.Β 49β84. MR 1718076, DOI 10.1090/conm/239/03597
- Nick Georgakopoulos, The ${RO (C_4)}$ integral homology of a point, arXiv:1912.06758, 2019.
- J. P. C. Greenlees and J. P. May, Generalized Tate cohomology, Mem. Amer. Math. Soc. 113 (1995), no.Β 543, viii+178. MR 1230773, DOI 10.1090/memo/0543
- J. P. C. Greenlees, Four approaches to cohomology theories with reality, An alpine bouquet of algebraic topology, Contemp. Math., vol. 708, Amer. Math. Soc., [Providence], RI, [2018] Β©2018, pp.Β 139β156. MR 3807754, DOI 10.1090/conm/708/14261
- M. A. Hill, M. J. Hopkins, and D. C. Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math. (2) 184 (2016), no.Β 1, 1β262. MR 3505179, DOI 10.4007/annals.2016.184.1.1
- Michael A. Hill, Michael J. Hopkins, and Douglas C. Ravenel, The slice spectral sequence for the $C_4$ analog of real $K$-theory, Forum Math. 29 (2017), no.Β 2, 383β447. MR 3619120, DOI 10.1515/forum-2016-0017
- Michael A. Hill, Freeness and equivariant stable homotopy, J. Topol. 15 (2022), no.Β 2, 359β397. MR 4413504, DOI 10.1112/topo.12227
- Po Hu and Igor Kriz, Real-oriented homotopy theory and an analogue of the Adams-Novikov spectral sequence, Topology 40 (2001), no.Β 2, 317β399. MR 1808224, DOI 10.1016/S0040-9383(99)00065-8
- John Holler and Igor Kriz, On $\textrm {RO}(G)$-graded equivariant βordinaryβ cohomology where $G$ is a power of ${\Bbb Z}/2$, Algebr. Geom. Topol. 17 (2017), no.Β 2, 741β763. MR 3623670, DOI 10.2140/agt.2017.17.741
- Eric Hogle and Clover May, The freeness theorem for equivariant cohomology of $\textrm {Rep}(C_2)$-complexes, Topology Appl. 285 (2020), 107413, 30. MR 4174010, DOI 10.1016/j.topol.2020.107413
- L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR 866482, DOI 10.1007/BFb0075778
- Clover May, A structure theorem for $RO(C_2)$-graded Bredon cohomology, Algebr. Geom. Topol. 20 (2020), no.Β 4, 1691β1728. MR 4127082, DOI 10.2140/agt.2020.20.1691
- Guoqi Yan, The $RO(C_{2^n})$-graded homotopy of $H\underline {\mathbb {Z}}$ through generalized Tate squares, arXiv:2302.01490, 2023.
- Mingcong Zeng, Equivariant Eilenberg-Mac Lane spectra in cyclic $p$-groups, arXiv:1710.01769, 2017.
Bibliographic Information
- Guoqi Yan
- Affiliation: Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
- ORCID: 0000-0002-9284-7510
- Received by editor(s): September 8, 2023
- Received by editor(s) in revised form: September 1, 2024, and September 3, 2024
- Published electronically: February 7, 2025
- Communicated by: Julie Bergner
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 1803-1816
- MSC (2020): Primary 55Q91, 55P42, 55P91
- DOI: https://doi.org/10.1090/proc/17057