The $L_p$-discrepancy for finite $p>1$ suffers from the curse of dimensionality
HTML articles powered by AMS MathViewer
- by Erich Novak and Friedrich Pillichshammer;
- Proc. Amer. Math. Soc. 153 (2025), 1447-1459
- DOI: https://doi.org/10.1090/proc/17100
- Published electronically: February 14, 2025
- HTML | PDF | Request permission
Abstract:
We prove that the $L_p$-discrepancy suffers from the curse of dimensionality for all $p$ in $(1,\infty )$ and hence only the case $p=1$ is still open.References
- József Beck and William W. L. Chen, Irregularities of distribution, Cambridge Tracts in Mathematics, vol. 89, Cambridge University Press, Cambridge, 1987. MR 903025, DOI 10.1017/CBO9780511565984
- Dmitriy Bilyk, Michael T. Lacey, and Armen Vagharshakyan, On the small ball inequality in all dimensions, J. Funct. Anal. 254 (2008), no. 9, 2470–2502. MR 2409170, DOI 10.1016/j.jfa.2007.09.010
- Josef Dick, Peter Kritzer, and Friedrich Pillichshammer, Lattice rules—numerical integration, approximation, and discrepancy, Springer Series in Computational Mathematics, vol. 58, Springer, Cham, [2022] ©2022. With an appendix by Adrian Ebert. MR 4472208, DOI 10.1007/978-3-031-09951-9
- Michael Drmota and Robert F. Tichy, Sequences, discrepancies and applications, Lecture Notes in Mathematics, vol. 1651, Springer-Verlag, Berlin, 1997. MR 1470456, DOI 10.1007/BFb0093404
- Michael Gnewuch, Hendrik Pasing, and Christian Weiss, A generalized Faulhaber inequality, improved bracketing covers, and applications to discrepancy, Math. Comp. 90 (2021), no. 332, 2873–2898. MR 4305372, DOI 10.1090/mcom/3666
- Stefan Heinrich, Erich Novak, Grzegorz W. Wasilkowski, and Henryk Woźniakowski, The inverse of the star-discrepancy depends linearly on the dimension, Acta Arith. 96 (2001), no. 3, 279–302. MR 1814282, DOI 10.4064/aa96-3-7
- Aicke Hinrichs, Covering numbers, Vapnik-Červonenkis classes and bounds for the star-discrepancy, J. Complexity 20 (2004), no. 4, 477–483. MR 2068153, DOI 10.1016/j.jco.2004.01.001
- David Krieg, Tractability of sampling recovery on unweighted function classes, Proc. Amer. Math. Soc. Ser. B 11 (2024), 115–125. MR 4746436, DOI 10.1090/bproc/216
- L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 419394
- Jiří Matoušek, Geometric discrepancy, Algorithms and Combinatorics, vol. 18, Springer-Verlag, Berlin, 1999. An illustrated guide. MR 1697825, DOI 10.1007/978-3-642-03942-3
- Erich Novak, Optimal algorithms for numerical integration: recent results and open problems, Monte Carlo and quasi-Monte Carlo methods, Springer Proc. Math. Stat., vol. 460, Springer, Cham, [2024] ©2024, pp. 105–131. MR 4774917, DOI 10.1007/978-3-031-59762-6_{5}
- Erich Novak and Friedrich Pillichshammer, The curse of dimensionality for the $L_ p$-discrepancy with finite $p$, J. Complexity 79 (2023), Paper No. 101769, 19. MR 4605397, DOI 10.1016/j.jco.2023.101769
- Erich Novak and H. Woźniakowski, Intractability results for integration and discrepancy, J. Complexity 17 (2001), no. 2, 388–441. 3rd Conference of the Foundations of Computational Mathematics (Oxford, 1999). MR 1843427, DOI 10.1006/jcom.2000.0577
- Erich Novak and Henryk Woźniakowski, Tractability of multivariate problems. Volume II: Standard information for functionals, EMS Tracts in Mathematics, vol. 12, European Mathematical Society (EMS), Zürich, 2010. MR 2676032, DOI 10.4171/084
- K. F. Roth, On irregularities of distribution, Mathematika 1 (1954), 73–79. MR 66435, DOI 10.1112/S0025579300000541
- Henryk Woźniakowski, Efficiency of quasi-Monte Carlo algorithms for high dimensional integrals, Monte Carlo and quasi-Monte Carlo methods 1998 (Claremont, CA), Springer, Berlin, 2000, pp. 114–136. MR 1849846
Bibliographic Information
- Erich Novak
- Affiliation: Mathematisches Institut, FSU Jena, Ernst-Abbe-Platz 2, 07740 Jena, Germany
- MR Author ID: 132370
- ORCID: 0000-0002-8341-916X
- Email: erich.novak@uni-jena.de
- Friedrich Pillichshammer
- Affiliation: Institut für Finanzmathematik und Angewandte Zahlentheorie, JKU Linz, Altenbergerstraße 69, A-4040 Linz, Austria
- MR Author ID: 661956
- ORCID: 0000-0001-6952-9218
- Email: friedrich.pillichshammer@jku.at
- Received by editor(s): March 12, 2024
- Received by editor(s) in revised form: August 28, 2024
- Published electronically: February 14, 2025
- Communicated by: Dmitriy Bilyk
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 1447-1459
- MSC (2020): Primary 11K38, 65C05, 65Y20
- DOI: https://doi.org/10.1090/proc/17100
Dedicated: Dedicated to Harald Niederreiter on the occasion of his 80th birthday