The number of symmetric chain decompositions
HTML articles powered by AMS MathViewer
- by István Tomon;
- Proc. Amer. Math. Soc. 153 (2025), 1511-1518
- DOI: https://doi.org/10.1090/proc/17142
- Published electronically: February 18, 2025
- HTML | PDF | Request permission
Abstract:
We prove that the number of symmetric chain decompositions of the Boolean lattice $2^{[n]}$ is \begin{equation*} \left (\frac {n}{2e}+o(n)\right )^{2^n}. \end{equation*} Furthermore, the number of symmetric chain decompositions of the hypergrid $[t]^n$ is \begin{equation*} n^{(1-o_n(1))\cdot t^n}. \end{equation*}References
- Ian Anderson, Combinatorics of finite sets, Dover Publications, Inc., Mineola, NY, 2002. Corrected reprint of the 1989 edition. MR 1902962
- József Balogh, Andrew Treglown, and Adam Zsolt Wagner, Applications of graph containers in the Boolean lattice, Random Structures Algorithms 49 (2016), no. 4, 845–872. MR 3570990, DOI 10.1002/rsa.20666
- L. M. Brégman, Some properties of nonnegative matrices and their permanents, Soviet Math. Dokl. 14 (1973), 945–949.
- Karl Däubel, Sven Jäger, Torsten Mütze, and Manfred Scheucher, On orthogonal symmetric chain decompositions, Electron. J. Combin. 26 (2019), no. 3, Paper No. 3.64, 32. MR 4017317, DOI 10.37236/8531
- N. G. de Bruijn, Ca. van Ebbenhorst Tengbergen, and D. Kruyswijk, On the set of divisors of a number, Nieuw Arch. Wiskunde (2) 23 (1951), 191–193. MR 43115
- G. P. Egorychev, Proof of the van der Waerden conjecture for permanents, Sibirsk. Mat. Zh. 22 (1981), no. 6, 65–71, 225 (Russian). MR 638007
- V. Falgas-Ravry, E. Räty, and I. Tomon, Dedekind’s problem in the hypergrid, Preprint, arXiv:2310.12946, 2023.
- D. I. Falikman, Proof of the van der Waerden conjecture on the permanent of a doubly stochastic matrix, Mat. Zametki 29 (1981), no. 6, 931–938, 957 (Russian). MR 625097
- Curtis Greene and Daniel J. Kleitman, Strong versions of Sperner’s theorem, J. Combinatorial Theory Ser. A 20 (1976), no. 1, 80–88. MR 389608, DOI 10.1016/0097-3165(76)90079-0
- Petr Gregor, Sven Jäger, Torsten Mütze, Joe Sawada, and Kaja Wille, Gray codes and symmetric chains, J. Combin. Theory Ser. B 153 (2022), 31–60. MR 4342529, DOI 10.1016/j.jctb.2021.10.008
- Jerrold R. Griggs, Sufficient conditions for a symmetric chain order, SIAM J. Appl. Math. 32 (1977), no. 4, 807–809. MR 441751, DOI 10.1137/0132068
- Jerrold Griggs, Charles E. Killian, and Carla D. Savage, Venn diagrams and symmetric chain decompositions in the Boolean lattice, Electron. J. Combin. 11 (2004), no. 1, Research Paper 2, 30. MR 2034416, DOI 10.37236/1755
- L. H. Harper, The morphology of partially ordered sets, J. Combinatorial Theory Ser. A 17 (1974), 44–58. MR 366762, DOI 10.1016/0097-3165(74)90027-2
- Gy. Katona, On a conjecture of Erdős and a stronger form of Sperner’s theorem, Studia Sci. Math. Hungar. 1 (1966), 59–63. MR 205864
- Daniel J. Kleitman, On a lemma of Littlewood and Offord on the distribution of certain sums, Math. Z. 90 (1965), 251–259. MR 184865, DOI 10.1007/BF01158565
- D. J. Kleitman, On an extremal property of antichains in partial orders, Combinatorics (eds. M. Hall and J. H. van Lint), Math. Centre Tracts 55 (1974), 77–90. Mathematics Centre, Amsterdam.
- Alexander Schrijver, Counting $1$-factors in regular bipartite graphs, J. Combin. Theory Ser. B 72 (1998), no. 1, 122–135. MR 1604705, DOI 10.1006/jctb.1997.1798
- James Shearer and Daniel J. Kleitman, Probabilities of independent choices being ordered, Stud. Appl. Math. 60 (1979), no. 3, 271–276. MR 532807, DOI 10.1002/sapm1979603271
- Emanuel Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27 (1928), no. 1, 544–548 (German). MR 1544925, DOI 10.1007/BF01171114
- Hunter Spink, Orthogonal symmetric chain decompositions of hypercubes, SIAM J. Discrete Math. 33 (2019), no. 2, 910–932. MR 3952674, DOI 10.1137/18M1187179
- István Tomon, Decompositions of the Boolean lattice into rank-symmetric chains, Electron. J. Combin. 23 (2016), no. 2, Paper 2.53, 17. MR 3522137, DOI 10.37236/5328
Bibliographic Information
- István Tomon
- Affiliation: Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden 90736
- MR Author ID: 992905
- Email: istvan.tomon@umu.se
- Received by editor(s): May 21, 2024
- Received by editor(s) in revised form: November 14, 2024
- Published electronically: February 18, 2025
- Additional Notes: This research supported in part by the Swedish Research Council grant VR 2023-03375.
- Communicated by: Isabella Novik
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 1511-1518
- MSC (2020): Primary 05A16, 06A07
- DOI: https://doi.org/10.1090/proc/17142