Non-convergence of some non-commuting double ergodic averages
HTML articles powered by AMS MathViewer
- by Tim Austin;
- Proc. Amer. Math. Soc. 153 (2025), 1701-1707
- DOI: https://doi.org/10.1090/proc/17144
- Published electronically: February 5, 2025
- HTML | PDF | Request permission
Abstract:
Let $S$ and $T$ be measure-preserving transformations of a probability space $(X,\mathcal {B},\mu )$. Let $f$ be a bounded measurable function, and consider the integrals of the corresponding ‘double’ ergodic averages: \[ \frac {1}{n}\sum _{i=0}^{n-1} \int f(S^ix)f(T^ix)\,d\mu (x) \qquad (n\ge 1).\] We construct examples for which these integrals do not converge as $n\to \infty$. These include examples in which $S$ and $T$ are rigid, and hence have entropy zero, answering a question of Frantzikinakis and Host.
Our proof begins with a corresponding construction for orthogonal operators on a Hilbert space, and then obtains transformations of a Gaussian measure space from them.
References
- I. Assani, Pointwise convergence of nonconventional averages, Colloq. Math. 102 (2005), no. 2, 245–262. MR 2152664, DOI 10.4064/cm102-2-6
- Daniel Berend, Joint ergodicity and mixing, J. Analyse Math. 45 (1985), 255–284. MR 833414, DOI 10.1007/BF02792552
- J. Bourgain, Double recurrence and almost sure convergence, J. Reine Angew. Math. 404 (1990), 140–161. MR 1037434, DOI 10.1515/crll.1990.404.140
- Jean-Pierre Conze and Emmanuel Lesigne, Théorèmes ergodiques pour des mesures diagonales, Bull. Soc. Math. France 112 (1984), no. 2, 143–175 (French, with English summary). MR 788966, DOI 10.24033/bsmf.2003
- I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinaĭ, Ergodic theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 245, Springer-Verlag, New York, 1982. Translated from the Russian by A. B. Sosinskiĭ. MR 832433, DOI 10.1007/978-1-4615-6927-5
- Sebastián Donoso and Wenbo Sun, Pointwise convergence of some multiple ergodic averages, Adv. Math. 330 (2018), 946–996. MR 3787561, DOI 10.1016/j.aim.2018.03.022
- Nikos Frantzikinakis, Furstenberg systems of Hardy field sequences and applications, J. Anal. Math. 147 (2022), no. 1, 333–372. MR 4499044, DOI 10.1007/s11854-022-0221-8
- Nikos Frantzikinakis and Bernard Host, Multiple recurrence and convergence without commutativity, J. Lond. Math. Soc. (2) 107 (2023), no. 5, 1635–1659. MR 4585298, DOI 10.1112/jlms.12721
- Harry Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256. MR 498471, DOI 10.1007/BF02813304
- H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, NJ, 1981. M. B. Porter Lectures. MR 603625, DOI 10.1515/9781400855162
- H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math. 34 (1978), 275–291 (1979). MR 531279, DOI 10.1007/BF02790016
- Wen Huang, Song Shao, and Xiangdong Ye, Pointwise convergence of multiple ergodic averages and strictly ergodic models, J. Anal. Math. 139 (2019), no. 1, 265–305. MR 4041103, DOI 10.1007/s11854-019-0061-3
- Wen Huang, Song Shao, and Xiangdong Ye, A counterexample on polynomial multiple convergence without commutativity, Bull. Soc. Math. France 152 (2024), no. 1, 149–168 (English, with English and French summaries). MR 4762178
- W. Huang, S. Shao, and X. Ye, A counterexample on multiple convergence without commutativity, arXiv:2407.10728, 2024.
- Alexander S. Kechris, Global aspects of ergodic group actions, Mathematical Surveys and Monographs, vol. 160, American Mathematical Society, Providence, RI, 2010. MR 2583950, DOI 10.1090/surv/160
- E. Lesigne, B. Rittaud, and T. de la Rue, Weak disjointness of measure-preserving dynamical systems, Ergodic Theory Dynam. Systems 23 (2003), no. 4, 1173–1198. MR 1997972, DOI 10.1017/S0143385702001505
- Mahendra Nadkarni, Spectral theory of dynamical systems, Texts and Readings in Mathematics, Springer, Singapore; Hindustan Book Agency, New Delhi, [2020] ©2020. Second edition [of 1719722]. MR 4230107, DOI 10.1007/978-981-15-6225-9
- Miguel N. Walsh, Norm convergence of nilpotent ergodic averages, Ann. of Math. (2) 175 (2012), no. 3, 1667–1688. MR 2912715, DOI 10.4007/annals.2012.175.3.15
Bibliographic Information
- Tim Austin
- Affiliation: Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, United Kingdom
- MR Author ID: 797893
- ORCID: 0009-0004-5850-7071
- Email: tim.austin@warwick.ac.uk
- Received by editor(s): August 12, 2024
- Received by editor(s) in revised form: October 28, 2024
- Published electronically: February 5, 2025
- Additional Notes: For the purpose of open access, the author has applied a Creative Commons Attribution (CC-BY) licence to any Author Accepted Manuscript version arising from this submission.
- Communicated by: Katrin Gelfert
- © Copyright 2025 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 153 (2025), 1701-1707
- MSC (2020): Primary 37A30; Secondary 47A35, 28A05, 37A44
- DOI: https://doi.org/10.1090/proc/17144